Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2307810, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38050940

RESUMO

The technical synergy between flexible sensing paper and triboelectric nanogenerator (TENG) in the next stage of artificial intelligence Internet of Things engineering makes the development of intelligent sensing paper with triboelectric function very attractive. Therefore, it is extremely urgent to explore functional papers that are more suitable for triboelectric sensing. Here, a cellulose nanocrystals (CNCs) reinforced PVDF hybrid paper (CPHP) is developed by electrospinning technology. Benefitting from the unique effects of CNCs, CPHP forms a solid cross-linked network among fibers and obtains a high-strength (25 MPa) paper-like state and high surface roughness. Meanwhile, CNCs also improve the triboelectrification effect of CPHP by assisting the PVDF matrix to form more electroactive phases (96% share) and a higher relative permittivity (17.9). The CPHP-based TENG with single electrode configuration demonstrates good output performance (open-circuit voltage of 116 V, short-circuit current of 2.2 µA and power density of 91 mW m-2 ) and ultrahigh pressure-sensitivity response (3.95 mV Pa-1 ), which endows CPHP with reliable power supply and sensing capability. More importantly, the CPHP-based flexible self-powered tactile sensor with TENG array exhibits multifunctional applications in imitation Morse code compilation, tactile track recognition, and game character control, showing great prospects in the intelligent inductive device and human-machine interaction.

2.
Sci Total Environ ; 914: 169629, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38157906

RESUMO

High level dissolved B, which poses risks to human health, has been widely observed in geothermal water. In the Guide Basin, NW China, a series of geothermal water samples along a fault show a wide range of B contents ranging from 3.14 to 8.33 mg/L, which are higher than the WHO Guideline value equaling 2.4 mg/L in drinking water. To identify the sources and fate of B, we conduct a comprehensive analysis of hydrochemistry and stable isotopes (D, 18O and 11B) of three thermal fields representing three stages of hydrogeochemical evolution (stages I, II and III). From stage I to III, there are trends of increasing mineral dissolution, which is supported by increasing mean reservoir temperature and concentrations of conservative elements (Cl, Na, K, Li and Si). Geothermal water in stage I with meteoric origin and the lowest reservoir temperature has the highest B/Na resulting from silicate dissolution and falls on the mixing line between granitoids and cold water on the plot of δ11B versus 1/B, showing the control of silicate dissolution. However, geothermal water in stage III has lower Ca, B Sr and B/Na than that in stage II. Because of the occurrence of other processes, geothermal water in stages II and III deviates from the LMWL. Compared with geothermal water in stage I, the increased Sr/Ca and decreased B/Ca show that B are removed by both coprecipitation and vapor separation. With the aid of B isotopes, we find vapor separation dominates in stage II, whereas carbonate precipitation dominates in stage III. Overall, a combined use of three isotopes (H, O and B) and three element ratios (B/Na, B/Ca and Sr/Ca) leads to a complete understanding of B cycle and hydrogeochemical evolution in hydrothermal systems.

3.
Carbohydr Polym ; 282: 119049, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123732

RESUMO

The cellulose nanocrystals (CNC) has attracted widespread attention in reinforced materials. However, the application of CNC in electrospinning has been limited due to its self-polymerization. Herein, a cobweb-like nanofibrous membrane was fabricated by electrospinning the polyacrylonitrile (PAN) and sulfydryl-functionalized CNC (SC). The SC content could reach to 48 wt% after the thiolation modification. The membrane with ultrafine fibers and interlaced nets possessed outstanding porosity (91.7%) and underwater superoleophobicity. An ultrahigh permeation flux of 1244 L·m-2·h-1 with a separation efficiency of >99.9% was achieved driven by gravity. The mechanical properties also enhanced significantly with the increase of SC. When the addition amount of SC was 48 wt%, the maximum tensile stress was 2.9 MPa, which was 3.4 times than that of the PAN membrane. The antifouling performance and chemical stability endowed the SC(48)/PAN membrane with intriguing reusability, thus making it exhibit enormous potential in oil/water separation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA