Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 108(7): 1342-1349, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34143952

RESUMO

EDEM3 encodes a protein that converts Man8GlcNAc2 isomer B to Man7-5GlcNAc2. It is involved in the endoplasmic reticulum-associated degradation pathway, responsible for the recognition of misfolded proteins that will be targeted and translocated to the cytosol and degraded by the proteasome. In this study, through a combination of exome sequencing and gene matching, we have identified seven independent families with 11 individuals with bi-allelic protein-truncating variants and one individual with a compound heterozygous missense variant in EDEM3. The affected individuals present with an inherited congenital disorder of glycosylation (CDG) consisting of neurodevelopmental delay and variable facial dysmorphisms. Experiments in human fibroblast cell lines, human plasma, and mouse plasma and brain tissue demonstrated decreased trimming of Man8GlcNAc2 isomer B to Man7GlcNAc2, consistent with loss of EDEM3 enzymatic activity. In human cells, Man5GlcNAc2 to Man4GlcNAc2 conversion is also diminished with an increase of Glc1Man5GlcNAc2. Furthermore, analysis of the unfolded protein response showed a reduced increase in EIF2AK3 (PERK) expression upon stimulation with tunicamycin as compared to controls, suggesting an impaired unfolded protein response. The aberrant plasma N-glycan profile provides a quick, clinically available test for validating variants of uncertain significance that may be identified by molecular genetic testing. We propose to call this deficiency EDEM3-CDG.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Defeitos Congênitos da Glicosilação/genética , Retículo Endoplasmático/genética , alfa-Manosidase/genética , Adolescente , Alelos , Proteínas de Ligação ao Cálcio/deficiência , Linhagem Celular , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/sangue , Deficiências do Desenvolvimento/genética , Feminino , Glicoproteínas/sangue , Glicosilação , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Mutação , Linhagem , Polissacarídeos/sangue , Deficiências na Proteostase/genética , alfa-Manosidase/deficiência
2.
Am J Hum Genet ; 108(5): 929-941, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811806

RESUMO

Proteins involved in transcriptional regulation harbor a demonstrated enrichment of mutations in neurodevelopmental disorders. The Sin3 (Swi-independent 3)/histone deacetylase (HDAC) complex plays a central role in histone deacetylation and transcriptional repression. Among the two vertebrate paralogs encoding the Sin3 complex, SIN3A variants cause syndromic intellectual disability, but the clinical consequences of SIN3B haploinsufficiency in humans are uncharacterized. Here, we describe a syndrome hallmarked by intellectual disability, developmental delay, and dysmorphic facial features with variably penetrant autism spectrum disorder, congenital malformations, corpus callosum defects, and impaired growth caused by disruptive SIN3B variants. Using chromosomal microarray or exome sequencing, and through international data sharing efforts, we identified nine individuals with heterozygous SIN3B deletion or single-nucleotide variants. Five individuals harbor heterozygous deletions encompassing SIN3B that reside within a ∼230 kb minimal region of overlap on 19p13.11, two individuals have a rare nonsynonymous substitution, and two individuals have a single-nucleotide deletion that results in a frameshift and predicted premature termination codon. To test the relevance of SIN3B impairment to measurable aspects of the human phenotype, we disrupted the orthologous zebrafish locus by genome editing and transient suppression. The mutant and morphant larvae display altered craniofacial patterning, commissural axon defects, and reduced body length supportive of an essential role for Sin3 function in growth and patterning of anterior structures. To investigate further the molecular consequences of SIN3B variants, we quantified genome-wide enhancer and promoter activity states by using H3K27ac ChIP-seq. We show that, similar to SIN3A mutations, SIN3B disruption causes hyperacetylation of a subset of enhancers and promoters in peripheral blood mononuclear cells. Together, these data demonstrate that SIN3B haploinsufficiency leads to a hitherto unknown intellectual disability/autism syndrome, uncover a crucial role of SIN3B in the central nervous system, and define the epigenetic landscape associated with Sin3 complex impairment.


Assuntos
Transtorno do Espectro Autista/genética , Haploinsuficiência/genética , Histona Desacetilases/metabolismo , Deficiência Intelectual/genética , Proteínas Repressoras/genética , Acetilação , Adolescente , Animais , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Feminino , Histonas/química , Histonas/metabolismo , Humanos , Lactente , Larva/genética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Mutação , Proteínas Repressoras/deficiência , Proteínas Repressoras/metabolismo , Síndrome , Adulto Jovem , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
3.
Genet Med ; 25(1): 135-142, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399134

RESUMO

PURPOSE: Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyzes the methylation of arginine residues on several protein substrates. Biallelic pathogenic PRMT7 variants have previously been associated with a syndromic neurodevelopmental disorder characterized by short stature, brachydactyly, intellectual developmental disability, and seizures. To our knowledge, no comprehensive study describes the detailed clinical characteristics of this syndrome. Thus, we aim to delineate the phenotypic spectrum of PRMT7-related disorder. METHODS: We assembled a cohort of 51 affected individuals from 39 different families, gathering clinical information from 36 newly described affected individuals and reviewing data of 15 individuals from the literature. RESULTS: The main clinical characteristics of the PRMT7-related syndrome are short stature, mild to severe developmental delay/intellectual disability, hypotonia, brachydactyly, and distinct facial morphology, including bifrontal narrowing, prominent supraorbital ridges, sparse eyebrows, short nose with full/broad nasal tip, thin upper lip, full and everted lower lip, and a prominent or squared-off jaw. Additional variable findings include seizures, obesity, nonspecific magnetic resonance imaging abnormalities, eye abnormalities (i.e., strabismus or nystagmus), and hearing loss. CONCLUSION: This study further delineates and expands the molecular, phenotypic spectrum and natural history of PRMT7-related syndrome characterized by a neurodevelopmental disorder with skeletal, growth, and endocrine abnormalities.


Assuntos
Braquidactilia , Nanismo , Deficiência Intelectual , Anormalidades Musculoesqueléticas , Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Nanismo/genética , Obesidade/genética , Fenótipo , Proteína-Arginina N-Metiltransferases/genética
4.
Am J Med Genet A ; 185(7): 2153-2159, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33851505

RESUMO

Hypotrichosis-lymphedema-telangiectasia syndrome (HLTS) is a rare condition caused by pathogenic variants in the SOX18 gene. SOX18 plays a key role in angio- and lymphangiogenesis due to its expression in venous endothelial cells from which the lymphatic system develops. It is also expressed in embryonic hair follicles, heart, and vascular smooth muscle cells. The main clinical symptoms of HLTS include sparse hair, alopecia totalis, lymphedema, most often affecting lower limbs, and telangiectatic lesions. Only 10 patients with a SOX18 pathogenic variant have been described that presented with additional features such as hydrocele, renal failure, arterial or pulmonary hypertension, aortic dilatation, and facial dysmorphism. Here, we summarize these phenotypic variations and report an additional HLTS patient, with a 14-nucleotide de novo duplication in SOX18 and congenital ileal atresia, a feature not previously associated with HLTS.


Assuntos
Predisposição Genética para Doença , Hipotricose/genética , Linfangiogênese/genética , Linfedema/genética , Fatores de Transcrição SOXF/genética , Telangiectasia/genética , Adolescente , Criança , Pré-Escolar , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Duplicação Gênica/genética , Humanos , Hipotricose/fisiopatologia , Lactente , Recém-Nascido , Linfedema/fisiopatologia , Masculino , Telangiectasia/fisiopatologia
5.
Am J Med Genet A ; 182(6): 1426-1437, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32275123

RESUMO

Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) is an autosomal dominant neurodevelopmental disorder caused by loss-of-function variants in NR2F1 and characterized by visual impairment, developmental delay, and intellectual disability. Here we report 18 new cases, provide additional clinical information for 9 previously reported individuals, and review an additional 27 published cases to present a total of 54 patients. Among these are 22 individuals with point mutations or in-frame deletions in the DNA-binding domain (DBD), and 32 individuals with other types of variants including whole-gene deletions, nonsense and frameshift variants, and point mutations outside the DBD. We corroborate previously described clinical characteristics including developmental delay, intellectual disability, autism spectrum disorder diagnoses/features thereof, cognitive/behavioral anomalies, hypotonia, feeding difficulties, abnormal brain MRI findings, and seizures. We also confirm a vision phenotype that includes optic nerve hypoplasia, optic atrophy, and cortical visual impairment. Additionally, we expand the vision phenotype to include alacrima and manifest latent nystagmus (fusional maldevelopment), and we broaden the behavioral phenotypic spectrum to include a love of music, an unusually good long-term memory, sleep difficulties, a high pain tolerance, and touch sensitivity. Furthermore, we provide additional evidence for genotype-phenotype correlations, specifically supporting a more severe phenotype associated with DBD variants.


Assuntos
Fator I de Transcrição COUP/genética , Deficiência Intelectual/genética , Atrofias Ópticas Hereditárias/genética , Convulsões/genética , Códon sem Sentido/genética , Proteínas de Ligação a DNA , Feminino , Mutação da Fase de Leitura/genética , Estudos de Associação Genética , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/fisiopatologia , Masculino , Mutação/genética , Atrofias Ópticas Hereditárias/complicações , Atrofias Ópticas Hereditárias/fisiopatologia , Mutação Puntual/genética , Convulsões/complicações , Convulsões/fisiopatologia
6.
Am J Med Genet A ; 182(5): 962-973, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32031333

RESUMO

CDC42BPB encodes MRCKß (myotonic dystrophy-related Cdc42-binding kinase beta), a serine/threonine protein kinase, and a downstream effector of CDC42, which has recently been associated with Takenouchi-Kosaki syndrome, an autosomal dominant neurodevelopmental disorder. We identified 12 heterozygous predicted deleterious variants in CDC42BPB (9 missense, 2 frameshift, and 1 nonsense) in 14 unrelated individuals (confirmed de novo in 11/14) with neurodevelopmental disorders including developmental delay/intellectual disability, autism, hypotonia, and structural brain abnormalities including cerebellar vermis hypoplasia and agenesis/hypoplasia of the corpus callosum. The frameshift and nonsense variants in CDC42BPB are expected to be gene-disrupting and lead to haploinsufficiency via nonsense-mediated decay. All missense variants are located in highly conserved and functionally important protein domains/regions: 3 are found in the protein kinase domain, 2 are in the citron homology domain, and 4 in a 20-amino acid sequence between 2 coiled-coil regions, 2 of which are recurrent. Future studies will help to delineate the natural history and to elucidate the underlying biological mechanisms of the missense variants leading to the neurodevelopmental and behavioral phenotypes.


Assuntos
Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Miotonina Proteína Quinase/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Adulto , Sequência de Aminoácidos , Transtorno Autístico/epidemiologia , Transtorno Autístico/genética , Transtorno Autístico/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/epidemiologia , Deficiências do Desenvolvimento/patologia , Feminino , Mutação da Fase de Leitura , Haploinsuficiência , Heterozigoto , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/patologia , Mutação com Perda de Função/genética , Masculino , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/patologia , Fenótipo
7.
Brain ; 142(9): 2617-2630, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31327001

RESUMO

The underpinnings of mild to moderate neurodevelopmental delay remain elusive, often leading to late diagnosis and interventions. Here, we present data on exome and genome sequencing as well as array analysis of 13 individuals that point to pathogenic, heterozygous, mostly de novo variants in WDFY3 (significant de novo enrichment P = 0.003) as a monogenic cause of mild and non-specific neurodevelopmental delay. Nine variants were protein-truncating and four missense. Overlapping symptoms included neurodevelopmental delay, intellectual disability, macrocephaly, and psychiatric disorders (autism spectrum disorders/attention deficit hyperactivity disorder). One proband presented with an opposing phenotype of microcephaly and the only missense-variant located in the PH-domain of WDFY3. Findings of this case are supported by previously published data, demonstrating that pathogenic PH-domain variants can lead to microcephaly via canonical Wnt-pathway upregulation. In a separate study, we reported that the autophagy scaffolding protein WDFY3 is required for cerebral cortical size regulation in mice, by controlling proper division of neural progenitors. Here, we show that proliferating cortical neural progenitors of human embryonic brains highly express WDFY3, further supporting a role for this molecule in the regulation of prenatal neurogenesis. We present data on Wnt-pathway dysregulation in Wdfy3-haploinsufficient mice, which display macrocephaly and deficits in motor coordination and associative learning, recapitulating the human phenotype. Consequently, we propose that in humans WDFY3 loss-of-function variants lead to macrocephaly via downregulation of the Wnt pathway. In summary, we present WDFY3 as a novel gene linked to mild to moderate neurodevelopmental delay and intellectual disability and conclude that variants putatively causing haploinsufficiency lead to macrocephaly, while an opposing pathomechanism due to variants in the PH-domain of WDFY3 leads to microcephaly.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Relacionadas à Autofagia/genética , Encéfalo/embriologia , Encéfalo/patologia , Variação Genética/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Proteínas Adaptadoras de Transdução de Sinal/química , Adolescente , Animais , Proteínas Relacionadas à Autofagia/química , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Tamanho do Órgão , Estrutura Secundária de Proteína
8.
Hum Genet ; 138(11-12): 1259-1266, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31555905

RESUMO

Alkylglycerol monooxygenase (AGMO) is the only enzyme known to cleave the O-alkyl bonds of ether lipids (alkylglycerols) which are essential components of cell membranes. A homozygous frameshift variant [p.(Glu324LysfsTer12)] in AGMO has recently been reported in two male siblings with syndromic microcephaly. In this study, we identified rare nonsense, in frame deletion, and missense biallelic variants in AGMO in two unrelated individuals with neurodevelopmental disabilities. We assessed the activity of seven disease associated AGMO variants including the four variants identified in our two affected individuals expressed in human embryonic kidney (HEK293T) cells. We demonstrated significantly diminished enzyme activity for all disease-associated variants, supporting the mechanism as decreased AGMO activity. Future mechanistic studies are necessary to understand how decreased AGMO activity leads to the neurologic manifestations.


Assuntos
Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mutação , Transtornos do Neurodesenvolvimento/patologia , Alelos , Células HEK293 , Humanos , Masculino , Transtornos do Neurodesenvolvimento/enzimologia , Transtornos do Neurodesenvolvimento/genética , Prognóstico
9.
Genet Med ; 21(4): 887-895, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30214072

RESUMO

PURPOSE: To investigate immune tolerance induction with transient low-dose methotrexate (TLD-MTX) initiated with recombinant human acid α-glucosidase (rhGAA), in treatment-naïve cross-reactive immunologic material (CRIM)-positive infantile-onset Pompe disease (IOPD) patients. METHODS: Newly diagnosed IOPD patients received subcutaneous or oral 0.4 mg/kg TLD-MTX for 3 cycles (3 doses/cycle) with the first 3 rhGAA infusions. Anti-rhGAA IgG titers, classified as high-sustained (HSAT; ≥51,200, ≥2 times after 6 months), sustained intermediate (SIT; ≥12,800 and <51,200 within 12 months), or low (LT; ≤6400 within 12 months), were compared with those of 37 CRIM-positive IOPD historic comparators receiving rhGAA alone. RESULTS: Fourteen IOPD TLD-MTX recipients at the median age of 3.8 months (range, 0.7-13.5 months) had a median last titer of 150 (range, 0-51,200) at median rhGAA duration ~83 weeks (range, 36-122 weeks). One IOPD patient (7.1%) developed titers in the SIT range and one patient (7.1%) developed titers in the HSAT range. Twelve of the 14 patients (85.7%) that received TLD-MTX remained LT, versus 5/37 HSAT (peak 51,200-409,600), 7/37 SIT (12,800-51,000), and 23/37 LT (200-12,800) among comparators. CONCLUSION: Results of TLD-MTX coinitiated with rhGAA are encouraging and merit a larger longitudinal study.


Assuntos
Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Doença de Depósito de Glicogênio Tipo II/imunologia , Tolerância Imunológica/genética , Metotrexato/administração & dosagem , Idade de Início , Reações Cruzadas/imunologia , Terapia de Reposição de Enzimas , Feminino , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/patologia , Humanos , Lactente , Recém-Nascido , Masculino , alfa-Glucosidases/administração & dosagem , alfa-Glucosidases/genética
10.
Genet Med ; 21(3): 601-607, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30245509

RESUMO

PURPOSE: TANGO2-related disorders were first described in 2016 and prior to this publication, only 15 individuals with TANGO2-related disorder were described in the literature. Primary features include metabolic crisis with rhabdomyolysis, encephalopathy, intellectual disability, seizures, and cardiac arrhythmias. We assess whether genotype and phenotype of TANGO2-related disorder has expanded since the initial discovery and determine the efficacy of exome sequencing (ES) as a diagnostic tool for detecting variants. METHODS: We present a series of 14 individuals from 11 unrelated families with complex medical and developmental histories, in whom ES or microarray identified compound heterozygous or homozygous variants in TANGO2. RESULTS: The initial presentation of patients with TANGO2-related disorders can be variable, including primarily neurological presentations. We expand the phenotype and genotype for TANGO2, highlighting the variability of the disorder. CONCLUSION: TANGO2-related disorders can have a more diverse clinical presentation than previously anticipated. We illustrate the utility of routine ES data reanalysis whereby discovery of novel disease genes can lead to a diagnosis in previously unsolved cases and the need for additional copy-number variation analysis when ES is performed.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Adolescente , Translocador Nuclear Receptor Aril Hidrocarboneto/fisiologia , Encefalopatias/genética , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Deficiências do Desenvolvimento/genética , Exoma , Família , Feminino , Genótipo , Humanos , Deficiência Intelectual/genética , Masculino , Linhagem , Fenótipo , Convulsões/genética , Sequenciamento do Exoma/métodos
12.
J Med Genet ; 55(8): 561-566, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28866611

RESUMO

BACKGROUND: The list of Mendelian disorders of the epigenetic machinery has expanded rapidly during the last 5 years. A few missense variants in the chromatin remodeler CHD1 have been found in several large-scale sequencing efforts focused on uncovering the genetic aetiology of autism. OBJECTIVES: To explore whether variants in CHD1 are associated with a human phenotype. METHODS: We used GeneMatcher to identify other physicians caring for patients with variants in CHD1. We also explored the epigenetic consequences of one of these variants in cultured fibroblasts. RESULTS: Here we describe six CHD1 heterozygous missense variants in a cohort of patients with autism, speech apraxia, developmental delay and facial dysmorphic features. Importantly, three of these variants occurred de novo. We also report on a subject with a de novo deletion covering a large fraction of the CHD1 gene without any obvious neurological phenotype. Finally, we demonstrate increased levels of the closed chromatin modification H3K27me3 in fibroblasts from a subject carrying a de novo variant in CHD1. CONCLUSIONS: Our results suggest that variants in CHD1 can lead to diverse phenotypic outcomes; however, the neurodevelopmental phenotype appears to be limited to patients with missense variants, which is compatible with a dominant negative mechanism of disease.


Assuntos
Montagem e Desmontagem da Cromatina/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Deficiências do Desenvolvimento/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação de Sentido Incorreto , Criança , Pré-Escolar , DNA Helicases/química , Proteínas de Ligação a DNA/química , Deficiências do Desenvolvimento/diagnóstico , Fácies , Feminino , Fibroblastos/metabolismo , Estudos de Associação Genética/métodos , Histonas/metabolismo , Humanos , Lactente , Modelos Moleculares , Fenótipo , Conformação Proteica , Relação Estrutura-Atividade
13.
Am J Hum Genet ; 97(3): 457-64, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26299366

RESUMO

Using whole-exome sequencing, we have identified in ten families 14 individuals with microcephaly, developmental delay, intellectual disability, hypotonia, spasticity, seizures, sensorineural hearing loss, cortical visual impairment, and rare autosomal-recessive predicted pathogenic variants in spermatogenesis-associated protein 5 (SPATA5). SPATA5 encodes a ubiquitously expressed member of the ATPase associated with diverse activities (AAA) protein family and is involved in mitochondrial morphogenesis during early spermatogenesis. It might also play a role in post-translational modification during cell differentiation in neuronal development. Mutations in SPATA5 might affect brain development and function, resulting in microcephaly, developmental delay, and intellectual disability.


Assuntos
Anormalidades Múltiplas/genética , Perda Auditiva/genética , Proteínas de Homeodomínio/genética , Deficiência Intelectual/genética , Microcefalia/genética , Convulsões/genética , ATPases Associadas a Diversas Atividades Celulares , Anormalidades Múltiplas/patologia , Sequência de Aminoácidos , Sequência de Bases , Exoma/genética , Feminino , Frequência do Gene , Genes Recessivos , Humanos , Masculino , Dados de Sequência Molecular , Mutação/genética , Alinhamento de Sequência , Análise de Sequência de DNA
14.
Am J Hum Genet ; 96(5): 816-25, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25865493

RESUMO

Transcription factors operate in developmental processes to mediate inductive events and cell competence, and perturbation of their function or regulation can dramatically affect morphogenesis, organogenesis, and growth. We report that a narrow spectrum of amino-acid substitutions within the transactivation domain of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (MAF), a leucine zipper-containing transcription factor of the AP1 superfamily, profoundly affect development. Seven different de novo missense mutations involving conserved residues of the four GSK3 phosphorylation motifs were identified in eight unrelated individuals. The distinctive clinical phenotype, for which we propose the eponym Aymé-Gripp syndrome, is not limited to lens and eye defects as previously reported for MAF/Maf loss of function but includes sensorineural deafness, intellectual disability, seizures, brachycephaly, distinctive flat facial appearance, skeletal anomalies, mammary gland hypoplasia, and reduced growth. Disease-causing mutations were demonstrated to impair proper MAF phosphorylation, ubiquitination and proteasomal degradation, perturbed gene expression in primary skin fibroblasts, and induced neurodevelopmental defects in an in vivo model. Our findings nosologically and clinically delineate a previously poorly understood recognizable multisystem disorder, provide evidence for MAF governing a wider range of developmental programs than previously appreciated, and describe a novel instance of protein dosage effect severely perturbing development.


Assuntos
Catarata/genética , Surdez/genética , Quinase 3 da Glicogênio Sintase/genética , Deficiência Intelectual/genética , Proteínas Proto-Oncogênicas c-maf/genética , Catarata/patologia , Síndrome de Down/genética , Síndrome de Down/patologia , Humanos , Deficiência Intelectual/patologia , Mutação , Fenótipo , Fosforilação , Convulsões/genética , Convulsões/patologia
16.
Hum Genet ; 135(7): 699-705, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27048600

RESUMO

Whole exome sequencing (WES) can be used to efficiently identify de novo genetic variants associated with genetically heterogeneous conditions including intellectual disabilities. We have performed WES for 4102 (1847 female; 2255 male) intellectual disability/developmental delay cases and we report five patients with a neurodevelopmental disorder associated with developmental delay, intellectual disability, behavioral problems, hypotonia, speech problems, microcephaly, pachygyria and dysmorphic features in whom we have identified de novo missense and canonical splice site mutations in CSNK2A1, the gene encoding CK2α, the catalytic subunit of protein kinase CK2, a ubiquitous serine/threonine kinase composed of two regulatory (ß) and two catalytic (α and/or α') subunits. Somatic mutations in CSNK2A1 have been implicated in various cancers; however, this is the first study to describe a human condition associated with germline mutations in any of the CK2 subunits.


Assuntos
Transtornos Dismórficos Corporais/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Transtornos Dismórficos Corporais/fisiopatologia , Caseína Quinase II/genética , Criança , Pré-Escolar , Exoma/genética , Feminino , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Deficiência Intelectual/patologia , Mutação , Transtornos do Neurodesenvolvimento/fisiopatologia
17.
Genet Med ; 18(11): 1143-1150, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26986877

RESUMO

PURPOSE: Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS) is an autosomal-dominant disorder characterized by optic atrophy and intellectual disability caused by loss-of-function mutations in NR2F1. We report 20 new individuals with BBSOAS, exploring the spectrum of clinical phenotypes and assessing potential genotype-phenotype correlations. METHODS: Clinical features of individuals with pathogenic NR2F1 variants were evaluated by review of medical records. The functional relevance of coding nonsynonymous NR2F1 variants was assessed with a luciferase assay measuring the impact on transcriptional activity. The effects of two start codon variants on protein expression were evaluated by western blot analysis. RESULTS: We recruited 20 individuals with novel pathogenic NR2F1 variants (seven missense variants, five translation initiation variants, two frameshifting insertions/deletions, one nonframeshifting insertion/deletion, and five whole-gene deletions). All the missense variants were found to impair transcriptional activity. In addition to visual and cognitive deficits, individuals with BBSOAS manifested hypotonia (75%), seizures (40%), autism spectrum disorder (35%), oromotor dysfunction (60%), thinning of the corpus callosum (53%), and hearing defects (20%). CONCLUSION: BBSOAS encompasses a broad range of clinical phenotypes. Functional studies help determine the severity of novel NR2F1 variants. Some genotype-phenotype correlations seem to exist, with missense mutations in the DNA-binding domain causing the most severe phenotypes.Genet Med 18 11, 1143-1150.


Assuntos
Transtorno do Espectro Autista/genética , Fator I de Transcrição COUP/genética , Estudos de Associação Genética , Atrofia Óptica/genética , Adolescente , Adulto , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/fisiopatologia , Criança , Pré-Escolar , Feminino , Deleção de Genes , Humanos , Masculino , Mutação de Sentido Incorreto , Atrofia Óptica/complicações , Atrofia Óptica/fisiopatologia , Linhagem
18.
Mol Genet Metab ; 118(3): 178-184, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27312126

RESUMO

Solid organ transplants are rarely performed in both adult and pediatric patients with primary mitochondrial disease. Poor outcomes have been described in case reports and small case series. It is unclear whether the underlying genetic disease has a significant impact on post-transplant morbidity and mortality. Data were obtained for 35 patients from 17 Mitochondrial Disease Centers across North America, the United Kingdom and Australia. Patient outcomes were noted after liver, kidney or heart transplantation. Excluding patients with POLG-related disease, post-transplant survival approached or met outcomes seen in non-mitochondrial disease transplant patients. The majority of mitochondrial disease patients did not have worsening of their mitochondrial disease within 90-days post-transplant. Post-transplant complications, including organ rejection, were not a common occurrence and were generally treatable. Many patients did not have a mitochondrial disease considered or diagnosed prior to transplantation. In conclusion, patients with mitochondrial disease in this cohort generally tolerated solid-organ transplantation. Such patients may not need to be excluded from transplant solely for their mitochondrial diagnosis; additional caution may be needed for patients with POLG-related disease. Transplant teams should be aware of mitochondrial disease as an etiology for organ-failure and consider appropriate consultation in patients without a known cause of their symptoms.


Assuntos
Rejeição de Enxerto/epidemiologia , Cardiopatias/terapia , Nefropatias/terapia , Hepatopatias/terapia , Doenças Mitocondriais/complicações , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Transplante de Coração , Humanos , Lactente , Transplante de Rim , Transplante de Fígado , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Taxa de Sobrevida , Resultado do Tratamento , Adulto Jovem
19.
N Engl J Med ; 367(14): 1321-31, 2012 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-22970919

RESUMO

BACKGROUND: Some copy-number variants are associated with genomic disorders with extreme phenotypic heterogeneity. The cause of this variation is unknown, which presents challenges in genetic diagnosis, counseling, and management. METHODS: We analyzed the genomes of 2312 children known to carry a copy-number variant associated with intellectual disability and congenital abnormalities, using array comparative genomic hybridization. RESULTS: Among the affected children, 10.1% carried a second large copy-number variant in addition to the primary genetic lesion. We identified seven genomic disorders, each defined by a specific copy-number variant, in which the affected children were more likely to carry multiple copy-number variants than were controls. We found that syndromic disorders could be distinguished from those with extreme phenotypic heterogeneity on the basis of the total number of copy-number variants and whether the variants are inherited or de novo. Children who carried two large copy-number variants of unknown clinical significance were eight times as likely to have developmental delay as were controls (odds ratio, 8.16; 95% confidence interval, 5.33 to 13.07; P=2.11×10(-38)). Among affected children, inherited copy-number variants tended to co-occur with a second-site large copy-number variant (Spearman correlation coefficient, 0.66; P<0.001). Boys were more likely than girls to have disorders of phenotypic heterogeneity (P<0.001), and mothers were more likely than fathers to transmit second-site copy-number variants to their offspring (P=0.02). CONCLUSIONS: Multiple, large copy-number variants, including those of unknown pathogenic significance, compound to result in a severe clinical presentation, and secondary copy-number variants are preferentially transmitted from maternal carriers. (Funded by the Simons Foundation Autism Research Initiative and the National Institutes of Health.).


Assuntos
Anormalidades Congênitas/genética , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/genética , Heterogeneidade Genética , Deficiência Intelectual/genética , Fenótipo , Transtorno Autístico/genética , Criança , Hibridização Genômica Comparativa , Feminino , Genoma Humano , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Fatores Sexuais
20.
Am J Med Genet A ; 161A(12): 3187-90, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23956225

RESUMO

Ebstein anomaly is a rare congenital heart defect that most often occurs sporadically within a kindred. Familial cases, although reported, are uncommon. At this time, the genetic etiology of Ebstein anomaly is not fully elucidated. Here, we describe clinical and molecular investigations of a rare case of familial Ebstein anomaly in association with a likely pathogenic mutation of the MYH7 gene. The severity of presentation varies, and Ebstein anomaly can be observed in association with such other heart defects as ventricular septal defect and left ventricular (LV) hypertrabeculation, as seen in our family of study. In our family of study, the 31-year-old father and four of his children have been diagnosed with Ebstein anomaly. Genetic testing revealed that the father was heterozygous for the Glu1220del variant detected in exon 27 of the MYH7 gene. The MYH7 gene encodes the ß-myosin heavy chain and is expressed in cardiac muscle. DNA sequencing of three of his affected children confirmed that they carried the same variant while the fourth affected child was not available for testing. This is the first report of familial Ebstein anomaly associated with the Glu1220del mutation of the MYH7 gene. The mutation segregates with disease in a family with autosomal dominant transmission of congenital heart defects including Ebstein anomaly and other associated cardiovascular defects including LV hypertrabeculation and ventricular septal defect.


Assuntos
Miosinas Cardíacas/genética , Anomalia de Ebstein/genética , Comunicação Interventricular/genética , Cadeias Pesadas de Miosina/genética , Disfunção Ventricular Esquerda/genética , Adulto , Criança , Pré-Escolar , Anomalia de Ebstein/complicações , Anomalia de Ebstein/fisiopatologia , Ecocardiografia , Feminino , Comunicação Interventricular/complicações , Comunicação Interventricular/fisiopatologia , Heterozigoto , Humanos , Lactente , Masculino , Mutação , Disfunção Ventricular Esquerda/complicações , Disfunção Ventricular Esquerda/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA