Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Malar J ; 16(1): 276, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28778169

RESUMO

BACKGROUND: Whilst significant progress has been made in the fight against malaria, vector control continues to rely on just two insecticidal methods, i.e., indoor residual spraying and insecticidal bed nets. House improvement shows great potential to complement these methods and may further reduce indoor mosquito biting and disease transmission. Open eaves serve as important mosquito house entry points and provide a suitable location for intercepting host-seeking anophelines. This study describes semi-field experiments in western Kenya with eave tubes, a household protection product that leverages the natural behaviour of host-seeking malaria mosquitoes. METHODS: Semi-field experiments were conducted in two screen-houses. In both of these a typical western Kenyan house, with mud walls and corrugated iron sheet roofing, was built. Eave tubes with bendiocarb- or deltamethrin-treated eave tube inserts were installed in the houses, and the impact on house entry of local strains of Anopheles gambiae and Anopheles arabiensis was determined. Experiments with open eave tubes (no netting) were conducted as a control and to determine house entry through eave tubes. Insecticidal activity of the inserts treated with insecticide was examined using standard 3-min exposure bioassays. RESULTS: Experiments with open eave tubes showed that a high percentage of released mosquitoes entered the house through tubes during experimental nights. When tubes were fitted with bendiocarb- or deltamethrin-treated inserts, on average 21% [95% CI 18-25%] and 39% [CI 26-51%] of An. gambiae s.s. were recaptured the following morning, respectively. This contrasts with 71% [CI 60-81%] in the treatment with open eaves and 54% [CI 47-61%] in the treatment where inserts were treated with fluorescent dye powder. For An. arabiensis recapture was 21% [CI 14-27%] and 22% [CI 18-25%], respectively, compared to 46% [CI 40-52%] and 25% [CI 15-35%] in the treatments with open tubes and fluorescent dye. CONCLUSIONS: Insecticide-treated eave tubes resulted in significant reductions in recapture rates for both malaria vector species, representing the first and promising results with this novel control tool against Kenyan malaria vectors. Further field evaluation of eave tubes under more realistic field conditions, as well as their comparison with existing approaches in terms of cost-effectiveness and community acceptance, is called for.


Assuntos
Anopheles , Habitação , Inseticidas , Malária/prevenção & controle , Controle de Mosquitos/instrumentação , Controle de Mosquitos/métodos , Mosquitos Vetores , Animais , Feminino , Humanos , Mordeduras e Picadas de Insetos/prevenção & controle , Quênia , Nitrilas , Fenilcarbamatos , Piretrinas
2.
J Med Entomol ; 59(2): 440-445, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-34919131

RESUMO

Aedes aegypti (L.) and Aedes albopictus (Skuse) mosquitoes of both sexes were attracted to a 3-part volatile synthetic phytochemical blend but differed according to their component ratios, 7:3:2 or 1:1:1, and their initial concentrations. These arbovirus vectors were presented with the blends as baits in paired baited and blank CFG traps in a large greenhouse mesocosm. Ae. aegypti attraction was highest at a 7:3:2 blend ratio, but at a concentration half that found most effective for an anopheline mosquito species in outdoor screenhouses. Both lower and higher concentrations yielded substantially lower attraction scores for Ae. aegypti. By contrast, the few tests conducted on Ae. albopictus showed that it was not as sensitive to concentration, but again it was more responsive to the 7:3:2 ratio of components than to the 1:1:1 ratio. The two sexes of both species were represented equally in the trap catches, indicating the potential value of this and similar attractive blends for population surveillance and control of Aedes mosquitoes.


Assuntos
Aedes , Animais , Feminino , Masculino , Mosquitos Vetores , Compostos Fitoquímicos/farmacologia
3.
Malar J ; 5: 39, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16700902

RESUMO

BACKGROUND: The successful development of odour-baited trapping systems for mosquitoes depends on the identification of behaviourally active semiochemicals, besides the design and operating principles of such devices. A large variety of 'attractants' has been identified in laboratory investigations, yet few of these increase trap catches in the field. A contained system, intermediate between the laboratory and open field, is presented and previous reports that human foot odour induces behavioural responses of Anopheles gambiae confirmed. METHODS: The response of 3-5 day old female An. gambiae towards odour-baited counterflow geometry traps (MM-X model; American Biophysics Corp., RI) was studied in semi-field (screen house) conditions in western Kenya. Traps were baited with human foot odour (collected on socks), carbon dioxide (CO2, 500 ml min(-1)), ammonia (NH3), 1-octen-3-ol, or various combinations thereof. Trap catches were log (x+1) transformed and subjected to Latin square analysis of variance procedures. RESULTS: Apart from 1-octen-3-ol, all odour baits caused significant (P < 0.05) increases in trap catches over non-baited traps. Foot odour remained behaviourally active for at least 8 days after collection on nylon or cotton sock fabric. A synergistic response (P < 0.001) was observed towards the combination of foot odour and CO2, which increased catches of these odours alone by 3.8 and 2.7 times, respectively. CONCLUSION: These results are the first to report behavioural responses of an African malaria vector to human foot odour outside the laboratory, and further investigation of fractions and/or individual chemical components of this odour complex are called for. Semi-field systems offer the prospect of high-throughput screening of candidate kairomones, which may expedite the development of efficient trap-bait systems for this and other African mosquito species.


Assuntos
Anopheles/fisiologia , Insetos Vetores/fisiologia , Controle de Mosquitos/instrumentação , Controle de Mosquitos/métodos , Odorantes , Feromônios , Amônia , Animais , Dióxido de Carbono , Fibra de Algodão , Feminino , Quênia , Malária/prevenção & controle , Controle de Mosquitos/normas , Nylons , Octanóis
4.
Malar J ; 2: 29, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-14565851

RESUMO

BACKGROUND: Current intra-domiciliary vector control depends on the application of residual insecticides and/or repellents. Although biological control agents have been developed against aquatic mosquito stages, none are available for adults. Following successful use of an entomopathogenic fungus against tsetse flies (Diptera: Glossinidae) we investigated the potency of this fungus as a biological control agent for adult malaria and filariasis vector mosquitoes. METHODS: In the laboratory, both sexes of Anopheles gambiae sensu stricto and Culex quinquefasciatus were passively contaminated with dry conidia of Metarhizium anisopliae. Pathogenicity of this fungus for An. gambiae was further tested for varying exposure times and different doses of oil-formulated conidia. RESULTS: Comparison of Gompertz survival curves and LT50 values for treated and untreated specimens showed that, for both species, infected mosquitoes died significantly earlier (p < 0.0001) than uninfected control groups. No differences in LT50 values were found for different exposure times (24, 48 hrs or continuous exposure) of An. gambiae to dry conidia. Exposure to oil-formulated conidia (doses ranging from 1.6 x 10(7) to 1.6 x 10(10) conidia/m2) gave LT50 values of 9.69 +/- 1.24 (lowest dose) to 5.89 +/- 0.35 days (highest dose), with infection percentages ranging from 4.4-83.7%. CONCLUSION: Our study marks the first to use an entomopathogenic fungus against adult Afrotropical disease vectors. Given its high pathogenicity for both adult Anopheles and Culex mosquitoes we recommend development of novel targeted indoor application methods for the control of endophagic host-seeking females.


Assuntos
Anopheles/microbiologia , Culex/microbiologia , Filariose/prevenção & controle , Hypocreales/fisiologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Fatores Etários , Animais , Bioensaio/métodos , Feminino , Insetos Vetores/microbiologia , Malária/microbiologia , Masculino , Controle Biológico de Vetores/métodos , Fatores Sexuais , Sobrevida , Fatores de Tempo
5.
Malar J ; 1: 19, 2002 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-12537599

RESUMO

BACKGROUND: The development and implementation of innovative vector control strategies for malaria control in Africa requires in-depth ecological studies in contained semi-field environments. This particularly applies to the development and release of genetically-engineered vectors that are refractory to Plasmodium infection. Here we describe a modified greenhouse, designed to simulate a natural Anopheles gambiae Giles ecosystem, and the first successful trials to complete the life-cycle of this mosquito vector therein. METHODS: We constructed a local house, planted crops and created breeding sites to simulate the natural ecosystem of this vector in a screen-walled greenhouse, exposed to ambient climate conditions, in western Kenya. Using three different starting points for release (blood-fed females, virgin females and males, or eggs), we allowed subsequent stages of the life-cycle to proceed under close observation until one cycle was completed. RESULTS: Completion of the life-cycle was observed in all three trials, indicating that the major life-history behaviours (mating, sugar feeding, oviposition and host seeking) occurred successfully. CONCLUSION: The system described can be used to study the behavioural ecology of laboratory-reared and wild mosquitoes, and lends itself to contained studies on the stability of transgenes, fitness effects and phenotypic characteristics of genetically-engineered disease vectors. The extension of this approach, to enable continuous maintenance of successive and overlapping insect generations, should be prioritized. Semi-field systems represent a promising means to significantly enhance our understanding of the behavioural and evolutionary ecology of African malaria vectors and our ability to develop and evaluate innovative control strategies. With regard to genetically-modified mosquitoes, development of such systems is an essential prerequisite to full field releases.


Assuntos
Anopheles/crescimento & desenvolvimento , Sistemas Ecológicos Fechados , Insetos Vetores/crescimento & desenvolvimento , Estágios do Ciclo de Vida/fisiologia , Animais , Anopheles/fisiologia , Ecologia/métodos , Feminino , Humanos , Umidade , Insetos Vetores/fisiologia , Quênia , Masculino , Microclima , Plantas/classificação , Pupa/fisiologia , Temperatura , Fatores de Tempo
6.
PLoS Negl Trop Dis ; 5(9): e1336, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21949897

RESUMO

Control of tsetse flies using insecticide-treated targets is often hampered by vegetation re-growth and encroachment which obscures a target and renders it less effective. Potentially this is of particular concern for the newly developed small targets (0.25 high × 0.5 m wide) which show promise for cost-efficient control of Palpalis group tsetse flies. Consequently the performance of a small target was investigated for Glossina fuscipes fuscipes in Kenya, when the target was obscured following the placement of vegetation to simulate various degrees of natural bush encroachment. Catches decreased significantly only when the target was obscured by more than 80%. Even if a small target is underneath a very low overhanging bush (0.5 m above ground), the numbers of G. f. fuscipes decreased by only about 30% compared to a target in the open. We show that the efficiency of the small targets, even in small (1 m diameter) clearings, is largely uncompromised by vegetation re-growth because G. f. fuscipes readily enter between and under vegetation. The essential characteristic is that there should be some openings between vegetation. This implies that for this important vector of HAT, and possibly other Palpalis group flies, a smaller initial clearance zone around targets can be made and longer interval between site maintenance visits is possible both of which will result in cost savings for large scale operations. We also investigated and discuss other site features e.g. large solid objects and position in relation to the water's edge in terms of the efficacy of the small targets.


Assuntos
Controle de Insetos/métodos , Inseticidas/administração & dosagem , Desenvolvimento Vegetal , Moscas Tsé-Tsé/fisiologia , Animais , Comportamento Animal , Vetores de Doenças , Feminino , Controle de Insetos/instrumentação , Quênia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA