RESUMO
Brain tumors are particularly aggressive and represent a significant cause of morbidity and mortality in adults and children, affecting the global population and being responsible for 2.6% of all cancer deaths (as well as 30% of those in children and 20% in young adults). The blood-brain barrier (BBB) excludes almost 100% of the drugs targeting brain neoplasms, representing one of the most significant challenges to current brain cancer therapy. In the last decades, carbon dots have increasingly played the role of drug delivery systems with theranostic applications against cancer, thanks to their bright photoluminescence, solubility in bodily fluids, chemical stability, and biocompatibility. After a summary outlining brain tumors and the current drug delivery strategies devised in their therapeutic management, this review explores the most recent literature about the advances and open challenges in the employment of carbon dots as both diagnostic and therapeutic agents in the treatment of brain cancers, together with the strategies devised to allow them to cross the BBB effectively.
Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Carbono/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Animais , Antineoplásicos/farmacocinética , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , HumanosRESUMO
Among the existing nanosystems used in electrochemical sensing, gold nanoparticles (AuNPs) have attracted considerable attention owing to their intriguing chemical and physical properties such as good electrical conductivity, high electrocatalytic activity, and high surface-to-volume ratio. However, despite these useful characteristics, there are some issues due to their instability in solution that can give rise to aggregation phenomena and the use of hazardous chemicals in the most common synthetic procedures. With an aim to find a solution to these issues, recently, we prepared and characterized carbon dots (CDs), from olive solid wastes, and employed them as reducing and capping agents in photo-activated AuNP synthesis, thus creating CD-Au nanohybrids. These nanomaterials appear extremely stable in aqueous solutions at room temperature, are contemporary, and have been obtained using CDs, which are exclusively based on non-toxic elements, with an additional advantage of being generated from an otherwise waste material. In this paper, the synthesis and characterization of CD-Au nanohybrids are described, and the electrochemical experiments for hydroquinone detection are discussed. The results indicate that CD-Au acts as an efficient material for sensing hydroquinone, matching a wide range of interests in science from industrial processes to environmental pollution.
RESUMO
Carbon nanomaterials have shown great potential in several fields, including biosensing, bioimaging, drug delivery, energy, catalysis, diagnostics, and nanomedicine. Recently, a new class of carbon nanomaterials, carbon dots (CDs), have attracted much attention due to their easy and inexpensive synthesis from a wide range of precursors and fascinating physical, chemical, and biological properties. In this work we have developed CDs derived from olive solid wastes of two Mediterranean regions, Puglia (CDs_P) and Calabria (CDs_C) and evaluated them in terms of their physicochemical properties and antibacterial activity against Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa). Results show the nanosystems have a quasi-spherical shape of 12-18 nm in size for CDs_P and 15-20 nm in size for CDs_C. UV-Vis characterization indicates a broad absorption band with two main peaks at about 270 nm and 300 nm, respectively, attributed to the π-π* and n-π* transitions of the CDs, respectively. Both samples show photoluminescence (PL) spectra excitation-dependent with a maximum at λem = 420 nm (λexc = 300 nm) for CDs_P and a red-shifted at λem = 445 nm (λexc = 300 nm) for CDs_C. Band gaps values of ≈ 1.48 eV for CDs_P and ≈ 1.53 eV for CDs_C are in agreement with semiconductor behaviour. ζ potential measures show very negative values for CDs_C compared to CDs_P (three times higher, -38 mV vs. -18 mV at pH = 7). The evaluation of the antibacterial properties highlights that both CDs have higher antibacterial activity towards Gram-positive than to Gram-negative bacteria. In addition, CDs_C exhibit bactericidal behaviour at concentrations of 360, 240, and 120 µg/mL, while lesser activity was found for CDs_P (bacterial cell reduction of only 30% at the highest concentration of 360 µg/mL). This finding was correlated to the higher surface charge of CDs_C compared to CDs_P. Further investigations are in progress to confirm this hypothesis and to gain insight on the antibacterial mechanism of both cultivars.
RESUMO
Bioconjugate gold-based nanostructures combining the plasmonic photothermal effect with photothermal-triggered DNA delivery are appealing materials for medical diagnostic and therapy for cell-based disease. In this study, we demonstrate the use of surface hybridization to prepare DNA-modified gold nanorods to be used as photo-delivery system for single stranded oligonucleotides. The as prepared DNA modified gold nanorods have strong absorption bands in the visible and near-infrared regions in which the absorbed light through photothermal effect, induces a surface temperature increasing up to the melting temperature with consequent DNA release. No evident DNA release was observed below the melting temperature. The experimental data were supported by molecular dynamic simulation investigation, showing the kinetics aspect of dsDNA de-hybridization at gold nanorods surface at temperature below (298 K) and above (333 K) the melting temperature of sequence investigated. We demonstrate that the cationic charges of surfactant, localized at nanorods surface, induce a remarkable de-hybridization of strands DNA, as confirmed by an increasing of hybridization enthalpy value of about 7 kcal/mol and by a faster de-hybridization process, respect the model of gold nanorods without positive charges. These data were corroborated by the increasing of the root mean square deviation value (about 4.4 Å, calculated at 333 K) indicating that the presence of cationic headgroup at gold surface induce separation of the double strand. This finding data paving the way for the development of nanostructured material for photothermal-triggered delivery systems of DNA for gene therapy application.
Assuntos
Hipertermia Induzida , Nanotubos , Ouro , Simulação de Dinâmica Molecular , OligonucleotídeosRESUMO
Carbon Dots (CDs) are the latest members of carbon-based nanomaterials, which since their discovery have attracted notable attention due to their chemical and mechanical properties, brilliant fluorescence, high photostability, and good biocompatibility. Together with the ease and affordable preparation costs, these intrinsic features make CDs the most promising nanomaterials for multiple applications in the biological field, such as bioimaging, biotherapy, and gene/drug delivery. This review will illustrate the most recent applications of CDs in the biomedical field, focusing on their biocompatibility, fluorescence, low cytotoxicity, cellular uptake, and theranostic properties to highlight above all their usefulness as a promising tool for cancer diagnosis and therapy.
RESUMO
We report a new chemical method for the functionalization of Mg-hydroxyapatite (Mg-HA) scaffold with Ag nanoparticles (Ag NPs) integrating in one step both the synthesis of the Ag NPs and their nano-structuring into the HA matrix (Ag-Mg-HA scaffold). This method exploits a green photochemical synthesis and allows the direct growth of Ag NPs on the Mg-HA surface. The surface structure of Ag-Mg-HA scaffold, investigated by scanning electron microscopy, shows no significant changes in the morphology upon Ag NPs incorporation. The presence of Ag was confirmed by EDX analysis. TEM and spectroscopic investigations show Ag NPs spherical shaped with a mean diameter of about 20 nm exhibiting the typical plasmon absorption band with maximum at 420 nm. The antibacterial properties of Ag-Mg-HA scaffolds were tested against two bacterial strains, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The results show excellent antibacterial properties achieving up to 99% and 100% reduction of colonies for both bacteria cultures after 24 h of incubation and 100% of reduction after 48 h of incubation. The cytotoxicity of Ag-Mg-HA was also in deep investigated assessing both cell proliferation and differentiation using hADSCs (human Adipose Derived Stem Cells) and testing data point at 0, 7, 14 and 24 days. The results show cytotoxic effect with cell proliferation decreasing up to 90% at 24 days and osteogenic differentiation inhibition. The observed cytotoxicity can be probable ascribed to the oxidative stress by ROS. Indeed, considering the effectiveness of the nanofunctionalization method and the excellent antibacterial properties showed by the Ag-Mg-HA scaffold, future works will be devoted to create nanofunctionalized scaffold satisfying both antimicrobial and osteo-regenerative properties.