Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(1): 156-169, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38141606

RESUMO

Ubiquitin-fold modifier 1 (UFM1) is a ubiquitin-like protein covalently conjugated with intracellular proteins through UFMylation, a process similar to ubiquitylation. Growing lines of evidence regarding not only the structural basis of the components essential for UFMylation but also their biological properties shed light on crucial roles of the UFM1 system in the endoplasmic reticulum (ER), such as ER-phagy and ribosome-associated quality control at the ER, although there are some functions unrelated to the ER. Mouse genetics studies also revealed the indispensable roles of this system in hematopoiesis, liver development, neurogenesis, and chondrogenesis. Of critical importance, mutations of genes encoding core components of the UFM1 system in humans cause hereditary developmental epileptic encephalopathy and Schohat-type osteochondrodysplasia of the epiphysis. Here, we provide a multidisciplinary review of our current understanding of the mechanisms and cellular functions of the UFM1 system as well as its pathophysiological roles, and discuss issues that require resolution.


Assuntos
Proteínas , Ubiquitinas , Humanos , Animais , Camundongos , Proteínas/metabolismo , Ubiquitinação , Ubiquitinas/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Fenômenos Fisiológicos Celulares
2.
Mol Cell ; 83(12): 2045-2058.e9, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37192628

RESUMO

Mitophagy plays an important role in mitochondrial homeostasis by selective degradation of mitochondria. During mitophagy, mitochondria should be fragmented to allow engulfment within autophagosomes, whose capacity is exceeded by the typical mitochondria mass. However, the known mitochondrial fission factors, dynamin-related proteins Dnm1 in yeasts and DNM1L/Drp1 in mammals, are dispensable for mitophagy. Here, we identify Atg44 as a mitochondrial fission factor that is essential for mitophagy in yeasts, and we therefore term Atg44 and its orthologous proteins mitofissin. In mitofissin-deficient cells, a part of the mitochondria is recognized by the mitophagy machinery as cargo but cannot be enwrapped by the autophagosome precursor, the phagophore, due to a lack of mitochondrial fission. Furthermore, we show that mitofissin directly binds to lipid membranes and brings about lipid membrane fragility to facilitate membrane fission. Taken together, we propose that mitofissin acts directly on lipid membranes to drive mitochondrial fission required for mitophagy.


Assuntos
Autofagia , Mitofagia , Animais , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Lipídeos , Mamíferos/metabolismo
3.
Mol Cell ; 77(6): 1163-1175.e9, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31995729

RESUMO

Clearance of biomolecular condensates by selective autophagy is thought to play a crucial role in cellular homeostasis. However, the mechanism underlying selective autophagy of condensates and whether liquidity determines a condensate's susceptibility to degradation by autophagy remain unknown. Here, we show that the selective autophagic cargo aminopeptidase I (Ape1) undergoes phase separation to form semi-liquid droplets. The Ape1-specific receptor protein Atg19 localizes to the surface of Ape1 droplets both in vitro and in vivo, with the "floatability" of Atg19 preventing its penetration into droplets. In vitro reconstitution experiments reveal that Atg19 and lipidated Atg8 are necessary and sufficient for selective sequestration of Ape1 droplets by membranes. This sequestration is impaired by mutational solidification of Ape1 droplets or diminished ability of Atg19 to float. Taken together, we propose that cargo liquidity and the presence of sufficient amounts of autophagic receptor on cargo are crucial for selective autophagy of biomolecular condensates.


Assuntos
Aminopeptidases/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Receptores de Superfície Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Aminopeptidases/genética , Família da Proteína 8 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Citoplasma/metabolismo , Mutação , Ligação Proteica , Transporte Proteico , Receptores de Superfície Celular/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Solubilidade , Proteínas de Transporte Vesicular/genética
4.
EMBO J ; 42(14): e113349, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37306101

RESUMO

NRF2 is a transcription factor responsible for antioxidant stress responses that is usually regulated in a redox-dependent manner. p62 bodies formed by liquid-liquid phase separation contain Ser349-phosphorylated p62, which participates in the redox-independent activation of NRF2. However, the regulatory mechanism and physiological significance of p62 phosphorylation remain unclear. Here, we identify ULK1 as a kinase responsible for the phosphorylation of p62. ULK1 colocalizes with p62 bodies, directly interacting with p62. ULK1-dependent phosphorylation of p62 allows KEAP1 to be retained within p62 bodies, thus activating NRF2. p62S351E/+ mice are phosphomimetic knock-in mice in which Ser351, corresponding to human Ser349, is replaced by Glu. These mice, but not their phosphodefective p62S351A/S351A counterparts, exhibit NRF2 hyperactivation and growth retardation. This retardation is caused by malnutrition and dehydration due to obstruction of the esophagus and forestomach secondary to hyperkeratosis, a phenotype also observed in systemic Keap1-knockout mice. Our results expand our understanding of the physiological importance of the redox-independent NRF2 activation pathway and provide new insights into the role of phase separation in this process.


Assuntos
Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Humanos , Animais , Camundongos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fosforilação , Proteína Sequestossoma-1/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Autofagia/fisiologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
5.
Nature ; 578(7794): 301-305, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025038

RESUMO

Many biomolecules undergo liquid-liquid phase separation to form liquid-like condensates that mediate diverse cellular functions1,2. Autophagy is able to degrade such condensates using autophagosomes-double-membrane structures that are synthesized de novo at the pre-autophagosomal structure (PAS) in yeast3-5. Whereas Atg proteins that associate with the PAS have been characterized, the physicochemical and functional properties of the PAS remain unclear owing to its small size and fragility. Here we show that the PAS is in fact a liquid-like condensate of Atg proteins. The autophagy-initiating Atg1 complex undergoes phase separation to form liquid droplets in vitro, and point mutations or phosphorylation that inhibit phase separation impair PAS formation in vivo. In vitro experiments show that Atg1-complex droplets can be tethered to membranes via specific protein-protein interactions, explaining the vacuolar membrane localization of the PAS in vivo. We propose that phase separation has a critical, active role in autophagy, whereby it organizes the autophagy machinery at the PAS.


Assuntos
Autofagossomos/química , Autofagossomos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosforilação , Mutação Puntual , Ligação Proteica , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
6.
EMBO Rep ; 23(6): e54801, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35417087

RESUMO

Selective autophagy cargos are recruited to autophagosomes primarily by interacting with autophagosomal ATG8 family proteins via the LC3-interacting region (LIR). The upstream sequence of most LIRs contains negatively charged residues such as Asp, Glu, and phosphorylated Ser and Thr. However, the significance of LIR phosphorylation (compared with having acidic amino acids) and the structural basis of phosphorylated LIR-ATG8 binding are not entirely understood. Here, we show that the serine residues upstream of the core LIR of the endoplasmic reticulum (ER)-phagy receptor TEX264 are phosphorylated by casein kinase 2, which is critical for its interaction with ATG8s, autophagosomal localization, and ER-phagy. Structural analysis shows that phosphorylation of these serine residues increases binding affinity by producing multiple hydrogen bonds with ATG8s that cannot be mimicked by acidic residues. This binding mode is different from those of other ER-phagy receptors that utilize a downstream helix, which is absent from TEX264, to increase affinity. These results suggest that phosphorylation of the LIR is critically important for strong LIR-ATG8 interactions, even in the absence of auxiliary interactions.


Assuntos
Caseína Quinase II , Proteínas Associadas aos Microtúbulos , Autofagia , Família da Proteína 8 Relacionada à Autofagia/química , Proteínas de Transporte/metabolismo , Caseína Quinase II/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação , Serina/metabolismo
7.
J Biol Chem ; 298(1): 101470, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890643

RESUMO

The diversity of glycerophospholipid species in cellular membranes is immense and affects various biological functions. Glycerol-3-phosphate acyltransferases (GPATs) and lysophospholipid acyltransferases (LPLATs), in concert with phospholipase A1/2s enzymes, contribute to this diversity via selective esterification of fatty acyl chains at the sn-1 or sn-2 positions of membrane phospholipids. These enzymes are conserved across all kingdoms, and in mammals four GPATs of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family and at least 14 LPLATs, either of the AGPAT or the membrane-bound O-acyltransferase (MBOAT) families, have been identified. Here we provide an overview of the biochemical and biological activities of these mammalian enzymes, including their predicted structures, involvements in human diseases, and essential physiological roles as revealed by gene-deficient mice. Recently, the nomenclature used to refer to these enzymes has generated some confusion due to the use of multiple names to refer to the same enzyme and instances of the same name being used to refer to completely different enzymes. Thus, this review proposes a more uniform LPLAT enzyme nomenclature, as well as providing an update of recent advances made in the study of LPLATs, continuing from our JBC mini review in 2009.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Glicerofosfolipídeos , Lisofosfolipídeos , 1-Acilglicerofosfocolina O-Aciltransferase/classificação , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Animais , Glicerofosfolipídeos/metabolismo , Humanos , Lisofosfolipídeos/metabolismo , Terminologia como Assunto
8.
Cancer Sci ; 114(7): 2699-2708, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37010190

RESUMO

Autophagy is a lysosomal degradation system of cytoplasmic components that contributes to cellular homeostasis through the turnover of various biomolecules and organelles, often in a selective manner. Autophagy is closely related to cancer, but its roles in cancer are complicated. It works as either a promoter or suppressor, depending on the stage and type of cancer. In this review, we briefly summarize the basic mechanisms of autophagy and describe the complicated roles of autophagy in cancer. Moreover, we summarize the clinical trials of autophagy inhibitors targeting cancer and the development of more specific autophagy inhibitors for future clinical application.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Autofagia
9.
Mol Cell ; 60(6): 914-29, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26687600

RESUMO

Multicellular organisms have multiple homologs of the yeast ATG8 gene, but the differential roles of these homologs in autophagy during development remain largely unknown. Here we investigated structure/function relationships in the two C. elegans Atg8 homologs, LGG-1 and LGG-2. lgg-1 is essential for degradation of protein aggregates, while lgg-2 has cargo-specific and developmental-stage-specific roles in aggregate degradation. Crystallography revealed that the N-terminal tails of LGG-1 and LGG-2 adopt the closed and open form, respectively. LGG-1 and LGG-2 interact differentially with autophagy substrates and Atg proteins, many of which carry a LIR motif. LGG-1 and LGG-2 have structurally distinct substrate binding pockets that prefer different residues in the interacting LIR motif, thus influencing binding specificity. Lipidated LGG-1 and LGG-2 possess distinct membrane tethering and fusion activities, which may result from the N-terminal differences. Our study reveals the differential function of two ATG8 homologs in autophagy during C. elegans development.


Assuntos
Autofagia , Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Proteínas Associadas aos Microtúbulos/química , Animais , Família da Proteína 8 Relacionada à Autofagia , Sítios de Ligação , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cristalografia por Raios X , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Mutação , Conformação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
10.
J Biol Chem ; 297(6): 101405, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34774801

RESUMO

Several amyotrophic lateral sclerosis (ALS)-related proteins such as FUS, TDP-43, and hnRNPA1 demonstrate liquid-liquid phase separation, and their disease-related mutations correlate with a transition of their liquid droplet form into aggregates. Missense mutations in SQSTM1/p62, which have been identified throughout the gene, are associated with ALS, frontotemporal degeneration (FTD), and Paget's disease of bone. SQSTM1/p62 protein forms liquid droplets through interaction with ubiquitinated proteins, and these droplets serve as a platform for autophagosome formation and the antioxidative stress response via the LC3-interacting region (LIR) and KEAP1-interacting region (KIR) of p62, respectively. However, it remains unclear whether ALS/FTD-related p62 mutations in the LIR and KIR disrupt liquid droplet formation leading to defects in autophagy, the stress response, or both. To evaluate the effects of ALS/FTD-related p62 mutations in the LIR and KIR on a major oxidative stress system, the Keap1-Nrf2 pathway, as well as on autophagic turnover, we developed systems to monitor each of these with high sensitivity. These methods such as intracellular protein-protein interaction assay, doxycycline-inducible gene expression system, and gene expression into primary cultured cells with recombinant adenovirus revealed that some mutants, but not all, caused reduced NRF2 activation and delayed autophagic cargo turnover. In contrast, while all p62 mutants demonstrated sufficient ability to form liquid droplets, all of these droplets also exhibited reduced inner fluidity. These results indicate that like other ALS-related mutant proteins, p62 missense mutations result in a primary defect in ALS/FTD via a qualitative change in p62 liquid droplet fluidity.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteína Sequestossoma-1/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Células HEK293 , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Mutação de Sentido Incorreto , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Sequestossoma-1/genética
11.
J Am Chem Soc ; 144(38): 17671-17679, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36107218

RESUMO

Selective modulation of autophagy is a promising therapeutic strategy, especially for cancer treatment. However, the lack of specific autophagy inhibitors limits this strategy. The formation of the ATG12-ATG5-ATG16L1 complex is essential for targeting the ATG12-ATG5 conjugate to proper membranes and to generate LC3-II for the progression of autophagy. Thus, targeting ATG5-ATG16L1 protein-protein interactions (PPIs) might inhibit early stage autophagy with high specificity. In this paper, we report that a stapled peptide derived from ATG16L1 exhibits potent binding affinity to ATG5, striking resistance to proteolysis, and significant autophagy inhibition activities in cells.


Assuntos
Proteínas de Transporte , Proteínas Associadas aos Microtúbulos , Autofagia , Proteína 5 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Transporte/metabolismo , Hidrocarbonetos , Proteínas Associadas aos Microtúbulos/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia
12.
FASEB J ; 35(6): e21501, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33956375

RESUMO

Platelet-activating factor (PAF) is a potent proinflammatory phospholipid mediator that elicits various cellular functions and promotes several pathological events, including anaphylaxis and neuropathic pain. PAF is biosynthesized by two types of lyso-PAF acetyltransferases: lysophosphatidylcholine acyltransferase 1 (LPCAT1) and LPCAT2, which are constitutive and inducible forms of lyso-PAF acetyltransferase, respectively. Because LPCAT2 mainly produces PAF under inflammatory stimuli, understanding the structure of LPCAT2 is important for developing specific drugs against PAF-related inflammatory diseases. Although the structure of LPCAT2 has not been determined, the crystal structure was reported for Thermotoga maritima PlsC, an enzyme in the same gene family as LPCAT2. Here, we identified residues in mouse LPCAT2 essential for its enzymatic activity and a potential acyl-coenzyme A (CoA)-binding pocket, based on homology modeling of mouse LPCAT2 with PlsC. We also found that Ala115 of mouse LPCAT2 was important for acyl-CoA selectivity. In conclusion, these results predict the three-dimensional (3D) structure of mouse LPCAT2. Our findings have implications for the future development of new drugs against PAF-related diseases.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/química , Acil Coenzima A/metabolismo , Modelos Moleculares , Mutação , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Sequência de Aminoácidos , Animais , Domínio Catalítico , Camundongos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Homologia de Sequência
13.
Genes Cells ; 25(1): 65-70, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31721365

RESUMO

Atg2 is one of the essential factors for autophagy. Recent advance of structural and biochemical study on yeast Atg2 proposed that Atg2 tethers the edge of the isolation membrane (IM) to the endoplasmic reticulum and mediates direct lipid transfer (LT) from ER to IM for IM expansion. In mammals, two Atg2 orthologs, ATG2A and ATG2B, participate in autophagic process. Here we showed that human ATG2B possesses the membrane tethering (MT) and LT activity that was promoted by negatively charged membranes and an Atg18 ortholog WIPI4. By contrast, negatively charged membranes reduced the yeast Atg2 activities in the absence of Atg18. These results suggest that the MT/LT activity of Atg2 is evolutionally conserved although their regulation differs among species.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/fisiologia , Transporte Biológico , Proteínas de Transporte/fisiologia , Retículo Endoplasmático/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Proteínas de Ligação a Fosfato/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/fisiologia
14.
Biol Pharm Bull ; 44(9): 1337-1343, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34193767

RESUMO

Autophagy is an intracellular degradation system regulating cellular homeostasis. The two ubiquitin-like modification systems named the Atg8 system and the Atg12 system are essential for autophagy. Atg8 and Atg12 are ubiquitin-like proteins covalently conjugated with a phosphatidylethanolamine (PE) and Atg5, respectively, via enzymatic reactions. The Atg8-PE conjugate binds to autophagic membranes and recruits various proteins through direct interaction, whereas the Atg12-Atg5 conjugate recognizes Atg3, the E2 enzyme for Atg8, and facilitates Atg8-PE conjugation by functioning as the E3 enzyme. Although structural and biochemical analyses have well established the Atg8-family interacting motif (AIM), studies on the interacting sequence for Atg12 are rare (only one example for human ATG12-ATG3), thereby making it challenging to define a binding motif. Here we determined the crystal structure of the plant ATG12b as a complex with the ATG12b-binding region of ATG3 and revealed that ATG12b recognizes the aspartic acid (Asp)-methionine (Met) motif in ATG3 via a hydrophobic pocket and a basic residue, which we confirmed critical for the complex formation by mutational analysis. This recognition mode is similar to that reported between human ATG12 and ATG3, suggesting that the Asp-Met sequence is a conserved Atg12-interacting motif (AIM12). These data suggest that AIM12 mediates E2-E3 interaction during Atg8 lipidation and provide structural basis for developing chemicals that regulate autophagy by targeting Atg12-family proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteína 12 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Autofagia , Proteínas de Plantas/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Motivos de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/ultraestrutura , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/ultraestrutura , Proteína 5 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/ultraestrutura , Cristalografia por Raios X , Mutagênese Sítio-Dirigida , Fosfatidiletanolaminas/metabolismo , Proteínas de Plantas/ultraestrutura
15.
Biochem Soc Trans ; 48(5): 2003-2014, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32897375

RESUMO

Autophagy is a lysosomal degradation system that involves de novo autophagosome formation. A lot of factors are involved in autophagosome formation, including dozens of Atg proteins that form supramolecular complexes, membrane structures including vesicles and organelles, and even membraneless organelles. Because these diverse higher-order structural components cooperate to mediate de novo formation of autophagosomes, it is too complicated to be elaborated only by cell biological approaches. Recent trials to regenerate each step of this phenomenon in vitro have started to elaborate on the molecular mechanisms of such a complicated process by simplification. In this review article, we outline the in vitro reconstitution trials in autophagosome formation, mainly focusing on the reports in the past few years and discussing the molecular mechanisms of autophagosome formation by comparing in vitro and in vivo observations.


Assuntos
Autofagossomos , Autofagia , Lipídeos/química , Animais , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Membrana Celular/metabolismo , Proteínas Fúngicas/metabolismo , Homeostase , Humanos , Técnicas In Vitro , Lipossomos/metabolismo , Lisossomos/química , Lisossomos/metabolismo , Mutação , Organelas , Fagossomos , Fosforilação , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/química
16.
Chemistry ; 25(17): 4299-4304, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30714234

RESUMO

A new scaffold for producing efficient organic fluorescent materials was identified: 2,5-diamino-4,6-diarylpyrimidine featuring a C4N4 elemental composition. Single-step installation of two aryl groups at the 4,6-positions of the pyrimidine core delivered fluorescent organic materials in a modular fashion. A range of fluorescent compounds with distinct absorption/emission properties was readily accessed by changing the aromatic attachments. A generally high absorption coefficient and quantum yield were observed, including C4N4 derivatives that could fluoresce even in the solid state. The two amino groups at the 2,5-positions of the pyrimidine were essential for intense fluorescence with a large Stokes shift, which was corroborated by structural relaxation to a p-iminoquinone-like structure in the excited state. Besides live-cell imaging capabilities, fluorescent labeling of a protein involved in autophagy elucidated a new protein-protein interaction, supporting potential utility in bioimaging applications.

17.
Mol Cell ; 44(3): 462-75, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-22055191

RESUMO

E1 enzymes activate ubiquitin-like proteins and transfer them to cognate E2 enzymes. Atg7, a noncanonical E1, activates two ubiquitin-like proteins, Atg8 and Atg12, and plays a crucial role in autophagy. Here, we report crystal structures of full-length Atg7 and its C-terminal domain bound to Atg8 and MgATP, as well as a solution structure of Atg8 bound to the extreme C-terminal domain (ECTD) of Atg7. The unique N-terminal domain (NTD) of Atg7 is responsible for Atg3 (E2) binding, whereas its C-terminal domain is comprised of a homodimeric adenylation domain (AD) and ECTD. The structural and biochemical data demonstrate that Atg8 is initially recognized by the C-terminal tail of ECTD and is then transferred to an AD, where the Atg8 C terminus is attacked by the catalytic cysteine to form a thioester bond. Atg8 is then transferred via a trans mechanism to the Atg3 bound to the NTD of the opposite protomer within a dimer.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Proteínas de Saccharomyces cerevisiae/química , Trifosfato de Adenosina/metabolismo , Proteína 7 Relacionada à Autofagia , Família da Proteína 8 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Sítios de Ligação , Cristalografia por Raios X , Ativação Enzimática , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Complexos Multienzimáticos , Mutação , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Fatores de Tempo , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/metabolismo
18.
Cell Struct Funct ; 41(1): 13-20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26754330

RESUMO

The Saccharomyces cerevisiae autophagy-initiation complex, Atg1 kinase complex, consists of Atg1, Atg13, Atg17, Atg29, and Atg31, while the corresponding complex in most other eukaryotes, including mammals, is composed of ULK1 (or ULK2), Atg13, FIP200 (also known as RB1CC1), and Atg101. ULKs are homologs of Atg1, and FIP200 is partially homologous to Atg17. However, the sequence of Atg101 is not similar to that of Atg29 or Atg31. Although Atg101 is essential for autophagy and widely conserved in eukaryotes, its precise function and structure have remained largely unknown. Now, structural and cell biological analysis of Atg101 together with its binding partner Atg13 reveal that Atg101 is required for stabilization of "uncapped" Atg13 in most eukaryotes and also for recruitment of downstream Atg proteins through the newly identified WF motif. By contrast, S. cerevisiae has stable "capped" Atg13, which does not require Atg101 for its stabilization. Possible roles for other binding partners such as Atg29, Atg31, and Atg28 in different organisms are also discussed.


Assuntos
Autofagia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Animais , Humanos , Leveduras/enzimologia
19.
J Biol Chem ; 290(49): 29506-18, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26442587

RESUMO

Autophagy is a conserved degradation process in which autophagosomes are generated by cooperative actions of multiple autophagy-related (Atg) proteins. Previous studies using the model yeast Saccharomyces cerevisiae have provided various insights into the molecular basis of autophagy; however, because of the modest stability of several Atg proteins, structural and biochemical studies have been limited to a subset of Atg proteins, preventing us from understanding how multiple Atg proteins function cooperatively in autophagosome formation. With the goal of expanding the scope of autophagy research, we sought to identify a novel organism with stable Atg proteins that would be advantageous for in vitro analyses. Thus, we focused on a newly isolated thermotolerant yeast strain, Kluyveromyces marxianus DMKU3-1042, to utilize as a novel system elucidating autophagy. We developed experimental methods to monitor autophagy in K. marxianus cells, identified the complete set of K. marxianus Atg homologs, and confirmed that each Atg homolog is engaged in autophagosome formation. Biochemical and bioinformatic analyses revealed that recombinant K. marxianus Atg proteins have superior thermostability and solubility as compared with S. cerevisiae Atg proteins, probably due to the shorter primary sequences of KmAtg proteins. Furthermore, bioinformatic analyses showed that more than half of K. marxianus open reading frames are relatively short in length. These features make K. marxianus proteins broadly applicable as tools for structural and biochemical studies, not only in the autophagy field but also in other fields.


Assuntos
Autofagia , Kluyveromyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Biologia Computacional , Fluorometria , Proteínas de Fluorescência Verde , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica , Microscopia de Fluorescência , Fases de Leitura Aberta , Desnaturação Proteica , Dobramento de Proteína , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Solubilidade
20.
Cell Mol Life Sci ; 72(16): 3083-96, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25948417

RESUMO

Autophagosome formation, a landmark event in autophagy, is accomplished by the concerted actions of Atg proteins. Among all Atg proteins, Atg1 kinase in yeast and its counterpart in higher eukaryotes, ULK1 kinase, function as the most upstream factor in this process and mediate autophagy initiation. In this review, we summarize current knowledge of the structure, molecular function, and regulation of Atg1 family kinases in the initiation of autophagy.


Assuntos
Autofagia/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Biológicos , Modelos Moleculares , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Dados de Sequência Molecular , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Saccharomyces cerevisiae , Especificidade da Espécie , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA