Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 166(4): 881-893, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27518563

RESUMO

Classically, hormones elicit specific cellular responses by activating dedicated receptors. Nevertheless, the biosynthesis and turnover of many of these hormone molecules also produce chemically related metabolites. These molecules may also possess hormonal activities; therefore, one or more may contribute to the adaptive plasticity of signaling outcomes in host organisms. Here, we show that a catabolite of the plant hormone abscisic acid (ABA), namely phaseic acid (PA), likely emerged in seed plants as a signaling molecule that fine-tunes plant physiology, environmental adaptation, and development. This trait was facilitated by both the emergence-selection of a PA reductase that modulates PA concentrations and by the functional diversification of the ABA receptor family to perceive and respond to PA. Our results suggest that PA serves as a hormone in seed plants through activation of a subset of ABA receptors. This study demonstrates that the co-evolution of hormone metabolism and signaling networks can expand organismal resilience.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Sesquiterpenos/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , NADP/metabolismo , Transdução de Sinais
2.
Biochemistry ; 63(3): 355-366, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38206111

RESUMO

Inferring the historical and biophysical causes of diversity within protein families is a complex puzzle. A key to unraveling this problem is characterizing the rugged topography of sequence-function adaptive landscapes. Using biochemical data from a 29 = 512 combinatorial library of tobacco 5-epi-aristolochene synthase (TEAS) mutants engineered to make the native major product of Egyptian henbane premnaspirodiene synthase (HPS) and a complementary 512 mutant HPS library, we address the question of how product specificity is controlled. These data sets reveal that HPS is far more robust and resistant to mutations than TEAS, where most mutants are promiscuous. We also combine experimental data with a sequence Potts Hamiltonian model and direct coupling analysis to quantify mutant fitness. Our results demonstrate that the Hamiltonian captures variation in product outputs across both libraries, clusters native family members based on their substrate specificities, and exposes the divergent catalytic roles of couplings between the catalytic and noncatalytic domains of TEAS versus HPS. Specifically, we found that the role of the interdomain connectivities in specifying product output is more important in TEAS than connectivities within the catalytic domain. Despite being 75% identical, this property is not shared by HPS, where connectivities within the catalytic domain are more important for specificity. By solving the X-ray crystal structure of HPS, we assessed structural bases for their interdomain network differences. Last, we calculate the product profile Shannon entropies of the two libraries, which showcases that site-site connectivities also play divergent roles in catalytic accuracy.


Assuntos
Alquil e Aril Transferases , Catálise , Domínio Catalítico , Mutação
3.
J Am Chem Soc ; 146(2): 1388-1395, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38176024

RESUMO

Site-specific covalent conjugation offers a powerful tool to identify and understand protein-protein interactions. In this study, we discover that sulfur fluoride exchange (SuFEx) warheads effectively crosslink the Escherichia coli acyl carrier protein (AcpP) with its partner BioF, a key pyridoxal 5'-phosphate (PLP)-dependent enzyme in the early steps of biotin biosynthesis by targeting a tyrosine residue proximal to the active site. We identify the site of crosslink by MS/MS analysis of the peptide originating from both partners. We further evaluate the BioF-AcpP interface through protein crystallography and mutational studies. Among the AcpP-interacting BioF surface residues, three critical arginine residues appear to be involved in AcpP recognition so that pimeloyl-AcpP can serve as the acyl donor for PLP-mediated catalysis. These findings validate an evolutionary gain-of-function for BioF, allowing the organism to build biotin directly from fatty acid biosynthesis through surface modifications selective for salt bridge formation with acidic AcpP residues.


Assuntos
Biotina , Fluoretos , Compostos de Enxofre , Espectrometria de Massas em Tandem , Biotina/metabolismo , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo
4.
Biochemistry ; 62(21): 3050-3060, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37813856

RESUMO

Over the past decade, advances in genomics have identified thousands of additional protein-coding small open reading frames (smORFs) missed by traditional gene finding approaches. These smORFs encode peptides and small proteins, commonly termed micropeptides or microproteins. Several of these newly discovered microproteins have biological functions and operate through interactions with proteins and protein complexes within the cell. CYREN1 is a characterized microprotein that regulates double-strand break repair in mammalian cells through interaction with Ku70/80 heterodimer. Ku70/80 binds to and stabilizes double-strand breaks and recruits the machinery needed for nonhomologous end join repair. In this study, we examined the biochemical properties of CYREN1 to better understand and explain its cellular protein interactions. Our findings support that CYREN1 is an intrinsically disordered microprotein and this disordered structure allows it to enriches several proteins, including a newly discovered interaction with SF3B1 via a distinct short linear motif (SLiMs) on CYREN1. Since many microproteins are predicted to be disordered, CYREN1 is an exemplar of how microproteins interact with other proteins and reveals an unknown scaffolding function of this microprotein that may link NHEJ and splicing.


Assuntos
Peptídeos , Proteínas , Animais , Proteínas/genética , Peptídeos/genética , Fases de Leitura Aberta , Mamíferos/genética , Micropeptídeos
5.
Cell ; 133(1): 164-76, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18394996

RESUMO

Plants grown at high densities perceive a decrease in the red to far-red (R:FR) ratio of incoming light, resulting from absorption of red light by canopy leaves and reflection of far-red light from neighboring plants. These changes in light quality trigger a series of responses known collectively as the shade avoidance syndrome. During shade avoidance, stems elongate at the expense of leaf and storage organ expansion, branching is inhibited, and flowering is accelerated. We identified several loci in Arabidopsis, mutations in which lead to plants defective in multiple shade avoidance responses. Here we describe TAA1, an aminotransferase, and show that TAA1 catalyzes the formation of indole-3-pyruvic acid (IPA) from L-tryptophan (L-Trp), the first step in a previously proposed, but uncharacterized, auxin biosynthetic pathway. This pathway is rapidly deployed to synthesize auxin at the high levels required to initiate the multiple changes in body plan associated with shade avoidance.


Assuntos
Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Triptofano/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Vias Biossintéticas , Escuridão , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Folhas de Planta/metabolismo , Alinhamento de Sequência , Triptofano/biossíntese , Triptofano Transaminase/química , Triptofano Transaminase/genética , Triptofano Transaminase/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(23): 12799-12805, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32457155

RESUMO

Prenylation is a common biological reaction in all domains of life wherein prenyl diphosphate donors transfer prenyl groups onto small molecules as well as large proteins. The enzymes that catalyze these reactions are structurally distinct from ubiquitous terpene cyclases that, instead, assemble terpenes via intramolecular rearrangements of a single substrate. Herein, we report the structure and molecular details of a new family of prenyltransferases from marine algae that repurposes the terpene cyclase structural fold for the N-prenylation of glutamic acid during the biosynthesis of the potent neurochemicals domoic acid and kainic acid. We solved the X-ray crystal structure of the prenyltransferase found in domoic acid biosynthesis, DabA, and show distinct active site binding modifications that remodel the canonical magnesium (Mg2+)-binding motif found in terpene cyclases. We then applied our structural knowledge of DabA and a homologous enzyme from the kainic acid biosynthetic pathway, KabA, to reengineer their isoprene donor specificities (geranyl diphosphate [GPP] versus dimethylallyl diphosphate [DMAPP]) with a single amino acid change. While diatom DabA and seaweed KabA enzymes share a common evolutionary lineage, they are distinct from all other terpene cyclases, suggesting a very distant ancestor to the larger terpene synthase family.


Assuntos
Alquil e Aril Transferases/química , Diatomáceas/enzimologia , Dimetilaliltranstransferase/química , Ácido Caínico/análogos & derivados , Neurotoxinas/biossíntese , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Diatomáceas/metabolismo , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Ácido Glutâmico/metabolismo , Ácido Caínico/metabolismo , Magnésio/metabolismo , Prenilação , Ligação Proteica
7.
Proc Natl Acad Sci U S A ; 117(39): 24224-24233, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32929027

RESUMO

Fatty acid synthases (FASs) and polyketide synthases (PKSs) iteratively elongate and often reduce two-carbon ketide units in de novo fatty acid and polyketide biosynthesis. Cycles of chain extensions in FAS and PKS are initiated by an acyltransferase (AT), which loads monomer units onto acyl carrier proteins (ACPs), small, flexible proteins that shuttle covalently linked intermediates between catalytic partners. Formation of productive ACP-AT interactions is required for catalysis and specificity within primary and secondary FAS and PKS pathways. Here, we use the Escherichia coli FAS AT, FabD, and its cognate ACP, AcpP, to interrogate type II FAS ACP-AT interactions. We utilize a covalent crosslinking probe to trap transient interactions between AcpP and FabD to elucidate the X-ray crystal structure of a type II ACP-AT complex. Our structural data are supported using a combination of mutational, crosslinking, and kinetic analyses, and long-timescale molecular dynamics (MD) simulations. Together, these complementary approaches reveal key catalytic features of FAS ACP-AT interactions. These mechanistic inferences suggest that AcpP adopts multiple, productive conformations at the AT binding interface, allowing the complex to sustain high transacylation rates. Furthermore, MD simulations support rigid body subdomain motions within the FabD structure that may play a key role in AT activity and substrate selectivity.


Assuntos
Proteína de Transporte de Acila/metabolismo , Proteína de Transporte de Acila S-Maloniltransferase/metabolismo , Domínio Catalítico , Proteínas de Escherichia coli/metabolismo , Ácido Graxo Sintase Tipo II/metabolismo , Cristalografia por Raios X
8.
Biochemistry ; 61(17): 1844-1852, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35985031

RESUMO

Vanadium-dependent haloperoxidases (VHPOs) from Streptomyces bacteria differ from their counterparts in fungi, macroalgae, and other bacteria by catalyzing organohalogenating reactions with strict regiochemical and stereochemical control. While this group of enzymes collectively uses hydrogen peroxide to oxidize halides for incorporation into electron-rich organic molecules, the mechanism for the controlled transfer of highly reactive chloronium ions in the biosynthesis of napyradiomycin and merochlorin antibiotics sets the Streptomyces vanadium-dependent chloroperoxidases apart. Here we report high-resolution crystal structures of two homologous VHPO family members associated with napyradiomycin biosynthesis, NapH1 and NapH3, that catalyze distinctive chemical reactions in the construction of meroterpenoid natural products. The structures, combined with site-directed mutagenesis and intact protein mass spectrometry studies, afforded a mechanistic model for the asymmetric alkene and arene chlorination reactions catalyzed by NapH1 and the isomerase activity catalyzed by NapH3. A key lysine residue in NapH1 situated between the coordinated vanadate and the putative substrate binding pocket was shown to be essential for catalysis. This observation suggested the involvement of the ε-NH2, possibly through formation of a transient chloramine, as the chlorinating species much as proposed in structurally distinct flavin-dependent halogenases. Unexpectedly, NapH3 is modified post-translationally by phosphorylation of an active site His (τ-pHis) consistent with its repurposed halogenation-independent, α-hydroxyketone isomerase activity. These structural studies deepen our understanding of the mechanistic underpinnings of VHPO enzymes and their evolution as enantioselective biocatalysts.


Assuntos
Streptomyces , Vanádio , Antibacterianos/química , Catálise , Isomerases , Vanádio/química
9.
Nat Chem Biol ; 16(8): 850-856, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32284603

RESUMO

In plants, phenylalanine biosynthesis occurs via two compartmentally separated pathways. Overexpression of petunia chorismate mutase 2 (PhCM2), which catalyzes the committed step of the cytosolic pathway, increased flux in cytosolic phenylalanine biosynthesis, but paradoxically decreased the overall levels of phenylalanine and phenylalanine-derived volatiles. Concomitantly, the levels of auxins, including indole-3-acetic acid and its precursor indole-3-pyruvic acid, were elevated. Biochemical and genetic analyses revealed the existence of metabolic crosstalk between the cytosolic phenylalanine biosynthesis and tryptophan-dependent auxin biosynthesis mediated by an aminotransferase that uses a cytosolic phenylalanine biosynthetic pathway intermediate, phenylpyruvate, as an amino acceptor for auxin formation.


Assuntos
Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Fenilalanina/biossíntese , Vias Biossintéticas/genética , Citosol/metabolismo , Indóis , Fenilalanina/metabolismo , Ácidos Fenilpirúvicos/metabolismo , Plantas/metabolismo , Triptofano
10.
Biochemistry ; 59(38): 3626-3638, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32857494

RESUMO

Elongating ketosynthases (KSs) catalyze carbon-carbon bond-forming reactions during the committed step for each round of chain extension in both fatty acid synthases (FASs) and polyketide synthases (PKSs). A small α-helical acyl carrier protein (ACP) shuttles fatty acyl intermediates between enzyme active sites. To accomplish this task, the ACP relies on a series of dynamic interactions with multiple partner enzymes of FAS and associated FAS-dependent pathways. Recent structures of the Escherichia coli FAS ACP, AcpP, in covalent complexes with its two cognate elongating KSs, FabF and FabB, provide high-resolution details of these interfaces, but a systematic analysis of specific interfacial interactions responsible for stabilizing these complexes has not yet been undertaken. Here, we use site-directed mutagenesis with both in vitro and in vivo activity analyses to quantitatively evaluate these contacting surfaces between AcpP and FabF. We delineate the FabF interface into three interacting regions and demonstrate the effects of point mutants, double mutants, and region deletion variants. Results from these analyses reveal a robust and modular FabF interface capable of tolerating seemingly critical interface mutations with only the deletion of an entire region significantly compromising activity. Structure and sequence analyses of FabF orthologs from related type II FAS pathways indicate significant conservation of type II FAS KS interface residues and, overall, support its delineation into interaction regions. These findings strengthen our mechanistic understanding of molecular recognition events between ACPs and FAS enzymes and provide a blueprint for engineering ACP-dependent biosynthetic pathways.


Assuntos
Acetiltransferases/metabolismo , Proteína de Transporte de Acila/metabolismo , Proteínas de Escherichia coli/metabolismo , Ácido Graxo Sintase Tipo II/metabolismo , Ácidos Graxos/biossíntese , Acetiltransferases/genética , Proteína de Transporte de Acila/genética , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Ácido Graxo Sintase Tipo II/genética , Mutagênese Sítio-Dirigida , Mutação Puntual
11.
Nat Chem Biol ; 14(6): 548-555, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29686356

RESUMO

The emergence of catalysis in a noncatalytic protein scaffold is a rare, unexplored event. Chalcone isomerase (CHI), a key enzyme in plant flavonoid biosynthesis, is presumed to have evolved from a nonenzymatic ancestor related to the widely distributed fatty-acid binding proteins (FAPs) and a plant protein family with no isomerase activity (CHILs). Ancestral inference supported the evolution of CHI from a protein lacking isomerase activity. Further, we identified four alternative founder mutations, i.e., mutations that individually instated activity, including a mutation that is not phylogenetically traceable. Despite strong epistasis in other cases of protein evolution, CHI's laboratory reconstructed mutational trajectory shows weak epistasis. Thus, enantioselective CHI activity could readily emerge despite a catalytically inactive starting point. Accordingly, X-ray crystallography, NMR, and molecular dynamics simulations reveal reshaping of the active site toward a productive substrate-binding mode and repositioning of the catalytic arginine that was inherited from the ancestral fatty-acid binding proteins.


Assuntos
Evolução Molecular , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Catálise , Domínio Catalítico , Chalconas/genética , Clonagem Molecular , Cristalografia por Raios X , Epistasia Genética , Escherichia coli , Proteínas de Ligação a Ácido Graxo/química , Flavonoides/química , Genes de Plantas , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Filogenia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Conformação Proteica
12.
Nat Chem Biol ; 14(10): 988, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29760514

RESUMO

In the version of this article originally published, the number for the equal contributions footnote was missing for Miriam Kaltenbach and Jason R. Burke in the author list. The error has been corrected in the PDF and print versions of this article.

13.
Bioorg Med Chem Lett ; 30(2): 126820, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31812466

RESUMO

Modular synthases, such as fatty acid, polyketide, and non-ribosomal peptide synthases (NRPSs), are sophisticated machineries essential in both primary and secondary metabolism. Various techniques have been developed to understand their genetic background and enzymatic abilities. However, uncovering the actual biosynthetic pathways remains challenging. Herein, we demonstrate a pipeline to study an assembly line synthase by interrogating the enzymatic function of each individual enzymatic domain of BpsA, a NRPS that produces the blue 3,3'-bipyridyl pigment indigoidine. Specific inhibitors for each biosynthetic domain of BpsA were obtained or synthesized, and the enzymatic performance of BpsA upon addition of each inhibitor was monitored by pigment development in vitro and in living bacteria. The results were verified using genetic mutants to inactivate each domain. Finally, the results complemented the currently proposed biosynthetic pathway of BpsA.


Assuntos
Proteínas de Bactérias/metabolismo , Peptídeo Sintases/química , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
14.
Proc Natl Acad Sci U S A ; 114(13): E2563-E2570, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28320959

RESUMO

The peroxisome proliferator-activated receptor (PPAR) family comprises three subtypes: PPARα, PPARγ, and PPARδ. PPARδ transcriptionally modulates lipid metabolism and the control of energy homeostasis; therefore, PPARδ agonists are promising agents for treating a variety of metabolic disorders. In the present study, we develop a panel of rationally designed PPARδ agonists. The modular motif affords efficient syntheses using building blocks optimized for interactions with subtype-specific residues in the PPARδ ligand-binding domain (LBD). A combination of atomic-resolution protein X-ray crystallographic structures, ligand-dependent LBD stabilization assays, and cell-based transactivation measurements delineate structure-activity relationships (SARs) for PPARδ-selective targeting and structural modulation. We identify key ligand-induced conformational transitions of a conserved tryptophan side chain in the LBD that trigger reorganization of the H2'-H3 surface segment of PPARδ. The subtype-specific conservation of H2'-H3 sequences suggests that this architectural remodeling constitutes a previously unrecognized conformational switch accompanying ligand-dependent PPARδ transcriptional regulation.


Assuntos
PPAR delta/química , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Estrutura Terciária de Proteína
15.
Nature ; 503(7477): 552-556, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24162851

RESUMO

Flavoproteins catalyse a diversity of fundamental redox reactions and are one of the most studied enzyme families. As monooxygenases, they are universally thought to control oxygenation by means of a peroxyflavin species that transfers a single atom of molecular oxygen to an organic substrate. Here we report that the bacterial flavoenzyme EncM catalyses the peroxyflavin-independent oxygenation-dehydrogenation dual oxidation of a highly reactive poly(ß-carbonyl). The crystal structure of EncM with bound substrate mimics and isotope labelling studies reveal previously unknown flavin redox biochemistry. We show that EncM maintains an unexpected stable flavin-oxygenating species, proposed to be a flavin-N5-oxide, to promote substrate oxidation and trigger a rare Favorskii-type rearrangement that is central to the biosynthesis of the antibiotic enterocin. This work provides new insight into the fine-tuning of the flavin cofactor in offsetting the innate reactivity of a polyketide substrate to direct its efficient electrocyclization.


Assuntos
Proteínas de Bactérias/metabolismo , Flavinas/metabolismo , Flavoproteínas/metabolismo , Oxigenases de Função Mista/metabolismo , Streptomyces/enzimologia , Antibacterianos/biossíntese , Proteínas de Bactérias/química , Biocatálise , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Cristalografia por Raios X , Ciclização , Flavoproteínas/química , Marcação por Isótopo , Oxigenases de Função Mista/química , Modelos Químicos , Modelos Moleculares , Oxirredução , Policetídeos/metabolismo , Conformação Proteica , Streptomyces/metabolismo , Especificidade por Substrato
16.
Proc Natl Acad Sci U S A ; 113(1): 224-9, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26699514

RESUMO

Cryptochrome 1 (CRY1) is a blue light receptor that mediates primarily blue-light inhibition of hypocotyl elongation. Very little is known of the mechanisms by which CRY1 affects growth. Blue light and temperature are two key environmental signals that profoundly affect plant growth and development, but how these two abiotic factors integrate remains largely unknown. Here, we show that blue light represses high temperature-mediated hypocotyl elongation via CRY1. Furthermore, CRY1 interacts directly with PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) in a blue light-dependent manner to repress the transcription activity of PIF4. CRY1 represses auxin biosynthesis in response to elevated temperature through PIF4. Our results indicate that CRY1 signal by modulating PIF4 activity, and that multiple plant photoreceptors [CRY1 and PHYTOCHROME B (PHYB)] and ambient temperature can mediate morphological responses through the same signaling component-PIF4.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Criptocromos/metabolismo , Hipocótilo/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Hipocótilo/genética , Hipocótilo/efeitos da radiação , Ácidos Indolacéticos/metabolismo , Luz , Oxigenases de Função Mista/genética , Fitocromo B/metabolismo , Transcrição Gênica
17.
Proc Natl Acad Sci U S A ; 113(14): 3797-802, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27001835

RESUMO

Halogenated pyrroles (halopyrroles) are common chemical moieties found in bioactive bacterial natural products. The halopyrrole moieties of mono- and dihalopyrrole-containing compounds arise from a conserved mechanism in which a proline-derived pyrrolyl group bound to a carrier protein is first halogenated and then elaborated by peptidic or polyketide extensions. This paradigm is broken during the marine pseudoalteromonad bacterial biosynthesis of the coral larval settlement cue tetrabromopyrrole (1), which arises from the substitution of the proline-derived carboxylate by a bromine atom. To understand the molecular basis for decarboxylative bromination in the biosynthesis of 1, we sequenced two Pseudoalteromonas genomes and identified a conserved four-gene locus encoding the enzymes involved in its complete biosynthesis. Through total in vitro reconstitution of the biosynthesis of 1 using purified enzymes and biochemical interrogation of individual biochemical steps, we show that all four bromine atoms in 1 are installed by the action of a single flavin-dependent halogenase: Bmp2. Tetrabromination of the pyrrole induces a thioesterase-mediated offloading reaction from the carrier protein and activates the biosynthetic intermediate for decarboxylation. Insights into the tetrabrominating activity of Bmp2 were obtained from the high-resolution crystal structure of the halogenase contrasted against structurally homologous halogenase Mpy16 that forms only a dihalogenated pyrrole in marinopyrrole biosynthesis. Structure-guided mutagenesis of the proposed substrate-binding pocket of Bmp2 led to a reduction in the degree of halogenation catalyzed. Our study provides a biogenetic basis for the biosynthesis of 1 and sets a firm foundation for querying the biosynthetic potential for the production of 1 in marine (meta)genomes.


Assuntos
Flavinas/metabolismo , Halogenação/fisiologia , Pseudoalteromonas/enzimologia , Pseudoalteromonas/metabolismo , Pirróis/química , Sequência de Aminoácidos , Animais , Antozoários/metabolismo , Organismos Aquáticos/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Bromo/química , Cristalografia por Raios X , Pseudoalteromonas/genética
18.
Biotechnol Bioeng ; 115(6): 1394-1402, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29457628

RESUMO

Polyketides are attractive compounds for uses ranging from biorenewable chemical precursors to high-value therapeutics. In many cases, synthesis in a heterologous host is required to produce these compounds in industrially relevant quantities. The type III polyketide synthase 2-pyrone synthase (2-PS) from Gerbera hybrida was used for the production of triacetic acid lactone (TAL) in Saccharomyces cerevisiae. Initial in vitro characterization of 2-PS led to the identification of active site variants with improved kinetic properties relative to wildtype. Further in vivo evaluation in S. cerevisiae suggested certain 2-PS mutations altered enzyme stability during fermentation. In vivo experiments also revealed beneficial cysteine to serine mutations that were not initially explored due to their distance from the active site of 2-PS, leading to the design of additional 2-PS enzymes. While these variants showed varying catalytic efficiencies in vitro, they exhibited up to 2.5-fold increases in TAL production when expressed in S. cerevisiae. Coupling of the 2-PS variant [C35S,C372S] to an engineered S. cerevisiae strain led to over 10 g/L TAL at 38% of theoretical yield following fed-batch fermentation, the highest reported to date. Our studies demonstrate the success of a coupled in vitro/in vivo approach to engineering enzymes and provide insight on cysteine-rich enzymes and design principles toward their use in non-native microbial hosts.


Assuntos
Biotecnologia/métodos , Policetídeo Sintases/metabolismo , Engenharia de Proteínas/métodos , Pironas/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Asteraceae/enzimologia , Policetídeo Sintases/química , Policetídeo Sintases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética
19.
Nature ; 485(7399): 530-3, 2012 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-22622584

RESUMO

Specialized metabolic enzymes biosynthesize chemicals of ecological importance, often sharing a pedigree with primary metabolic enzymes. However, the lineage of the enzyme chalcone isomerase (CHI) remained unknown. In vascular plants, CHI-catalysed conversion of chalcones to chiral (S)-flavanones is a committed step in the production of plant flavonoids, compounds that contribute to attraction, defence and development. CHI operates near the diffusion limit with stereospecific control. Although associated primarily with plants, the CHI fold occurs in several other eukaryotic lineages and in some bacteria. Here we report crystal structures, ligand-binding properties and in vivo functional characterization of a non-catalytic CHI-fold family from plants. Arabidopsis thaliana contains five actively transcribed genes encoding CHI-fold proteins, three of which additionally encode amino-terminal chloroplast-transit sequences. These three CHI-fold proteins localize to plastids, the site of de novo fatty-acid biosynthesis in plant cells. Furthermore, their expression profiles correlate with those of core fatty-acid biosynthetic enzymes, with maximal expression occurring in seeds and coinciding with increased fatty-acid storage in the developing embryo. In vitro, these proteins are fatty-acid-binding proteins (FAPs). FAP knockout A. thaliana plants show elevated α-linolenic acid levels and marked reproductive defects, including aberrant seed formation. Notably, the FAP discovery defines the adaptive evolution of a stereospecific and catalytically 'perfected' enzyme from a non-enzymatic ancestor over a defined period of plant evolution.


Assuntos
Arabidopsis/química , Biocatálise , Evolução Molecular , Ácidos Graxos/metabolismo , Liases Intramoleculares/química , Liases Intramoleculares/metabolismo , Dobramento de Proteína , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cristalografia por Raios X , Proteínas de Ligação a Ácido Graxo/química , Proteínas de Ligação a Ácido Graxo/deficiência , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Liases Intramoleculares/deficiência , Liases Intramoleculares/genética , Ligantes , Modelos Moleculares , Fenótipo , Ligação Proteica , Estereoisomerismo , Ácido alfa-Linolênico/metabolismo
20.
Proc Natl Acad Sci U S A ; 112(32): 10050-5, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216978

RESUMO

Terpenoids, compounds found in all domains of life, represent the largest class of natural products with essential roles in their hosts. All terpenoids originate from the five-carbon building blocks, isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP), which can be derived from the mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathways. The absence of two components of the MVA pathway from archaeal genomes led to the discovery of an alternative MVA pathway with isopentenyl phosphate kinase (IPK) catalyzing the final step, the formation of IPP. Despite the fact that plants contain the complete classical MVA pathway, IPK homologs were identified in every sequenced green plant genome. Here, we show that IPK is indeed a member of the plant terpenoid metabolic network. It is localized in the cytosol and is coexpressed with MVA pathway and downstream terpenoid network genes. In planta, IPK acts in parallel with the MVA pathway and plays an important role in regulating the formation of both MVA and MEP pathway-derived terpenoid compounds by controlling the ratio of IP/DMAP to IPP/DMAPP. IP and DMAP can also competitively inhibit farnesyl diphosphate synthase. Moreover, we discovered a metabolically available carbon source for terpenoid formation in plants that is accessible via IPK overexpression. This metabolite reactivation approach offers new strategies for metabolic engineering of terpenoid production.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Archaea/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Terpenos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas , Hemiterpenos/metabolismo , Cinética , Redes e Vias Metabólicas/genética , Ácido Mevalônico/metabolismo , Compostos Organofosforados/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Homologia de Sequência de Aminoácidos , Sesquiterpenos/metabolismo , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA