Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(32): e2201286119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35925888

RESUMO

Thermoregulation is an important aspect of human homeostasis, and high temperatures pose serious stresses for the body. Malignant hyperthermia (MH) is a life-threatening disorder in which body temperature can rise to a lethal level. Here we employ an optically controlled local heat-pulse method to manipulate the temperature in cells with a precision of less than 1 °C and find that the mutants of ryanodine receptor type 1 (RyR1), a key Ca2+ release channel underlying MH, are heat hypersensitive compared with the wild type (WT). We show that the local heat pulses induce an intracellular Ca2+ burst in human embryonic kidney 293 cells overexpressing WT RyR1 and some RyR1 mutants related to MH. Fluorescence Ca2+ imaging using the endoplasmic reticulum-targeted fluorescent probes demonstrates that the Ca2+ burst originates from heat-induced Ca2+ release (HICR) through RyR1-mutant channels because of the channels' heat hypersensitivity. Furthermore, the variation in the heat hypersensitivity of four RyR1 mutants highlights the complexity of MH. HICR likewise occurs in skeletal muscles of MH model mice. We propose that HICR contributes an additional positive feedback to accelerate thermogenesis in patients with MH.


Assuntos
Hipertermia Maligna , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Cálcio/metabolismo , Células HEK293 , Temperatura Alta , Humanos , Hipertermia Maligna/genética , Hipertermia Maligna/patologia , Proteínas de Membrana , Camundongos , Músculo Esquelético/metabolismo , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo
2.
EMBO J ; 39(18): e105759, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32744742

RESUMO

Parvalbumin-positive (PV+ ) fast-spiking interneurons are essential to control the firing activity of principal neuron ensembles, thereby regulating cognitive processes. The high firing frequency activity of PV+ interneurons imposes high-energy demands on their metabolism that must be supplied by distinctive machinery for energy generation. Exploring single-cell transcriptomic data for the mouse cortex, we identified a metabolism-associated gene with highly restricted expression to PV+ interneurons: Cox6a2, which codes for an isoform of a cytochrome c oxidase subunit. Cox6a2 deletion in mice disrupts perineuronal nets and enhances oxidative stress in PV+ interneurons, which in turn impairs the maturation of their morphological and functional properties. Such dramatic effects were likely due to an essential role of COX6A2 in energy balance of PV+ interneurons, underscored by a decrease in the ATP-to-ADP ratio in Cox6a2-/- PV+ interneurons. Energy disbalance and aberrant maturation likely hinder the integration of PV+ interneurons into cortical neuronal circuits, leading to behavioral alterations in mice. Additionally, in a human patient bearing mutations in COX6A2, we found a potential association of the mutations with mental/neurological abnormalities.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Interneurônios/enzimologia , Proteínas Musculares/metabolismo , Estresse Oxidativo , Difosfato de Adenosina/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Idoso , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Musculares/genética
3.
Hum Mol Genet ; 30(11): 1006-1019, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33822956

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscular weakness because of the loss of dystrophin. Extracellular Ca2+ flows into the cytoplasm through membrane tears in dystrophin-deficient myofibers, which leads to muscle contracture and necrosis. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) takes up cytosolic Ca2+ into the sarcoplasmic reticulum, but its activity is decreased in dystrophic muscle. Here, we show that an allosteric SERCA activator, CDN1163, ameliorates dystrophic phenotypes in dystrophin-deficient mdx mice. The administration of CDN1163 prevented exercise-induced muscular damage and restored mitochondrial function. In addition, treatment with CDN1163 for 7 weeks enhanced muscular strength and reduced muscular degeneration and fibrosis in mdx mice. Our findings provide preclinical proof-of-concept evidence that pharmacological activation of SERCA could be a promising therapeutic strategy for DMD. Moreover, CDN1163 improved muscular strength surprisingly in wild-type mice, which may pave the new way for the treatment of muscular dysfunction.


Assuntos
Distrofina/genética , Distrofia Muscular de Duchenne/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Distrofina/deficiência , Humanos , Camundongos , Camundongos Endogâmicos mdx , Contração Muscular/genética , Debilidade Muscular/genética , Debilidade Muscular/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Distrofia Muscular de Duchenne/patologia , Fenótipo , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patologia
4.
Hum Genet ; 142(1): 59-71, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36048237

RESUMO

Dystrophinopathy is caused by alterations in DMD. Approximately 1% of patients remain genetically undiagnosed, because intronic variations are not detected by standard methods. Here, we combined laboratory and in silico analyses to identify disease-causing genomic variants in genetically undiagnosed patients and determine the regulatory mechanisms underlying abnormal DMD transcript generation. DMD transcripts from 20 genetically undiagnosed dystrophinopathy patients in whom no exon variants were identified, despite dystrophin deficiency on muscle biopsy, were analyzed by transcriptome sequencing. Genome sequencing captured intronic variants and their effects were interpreted using in silico tools. Targeted long-read sequencing was applied in cases with suspected structural genomic abnormalities. Abnormal DMD transcripts were detected in 19 of 20 cases; Exonization of intronic sequences in 15 cases, exon skipping in one case, aberrantly spliced and polyadenylated transcripts in two cases and transcription termination in one case. Intronic single nucleotide variants, chromosomal rearrangements and nucleotide repeat expansion were identified in DMD gene as pathogenic causes of transcript alteration. Our combined analysis approach successfully identified pathogenic events. Detection of diseasing-causing mechanisms in DMD transcripts could inform the therapeutic options for patients with dystrophinopathy.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Splicing de RNA/genética , Íntrons/genética , Nucleotídeos , Análise de Sequência de RNA
5.
Am J Hum Genet ; 107(6): 1078-1095, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33217308

RESUMO

The myosin-directed chaperone UNC-45B is essential for sarcomeric organization and muscle function from Caenorhabditis elegans to humans. The pathological impact of UNC-45B in muscle disease remained elusive. We report ten individuals with bi-allelic variants in UNC45B who exhibit childhood-onset progressive muscle weakness. We identified a common UNC45B variant that acts as a complex hypomorph splice variant. Purified UNC-45B mutants showed changes in folding and solubility. In situ localization studies further demonstrated reduced expression of mutant UNC-45B in muscle combined with abnormal localization away from the A-band towards the Z-disk of the sarcomere. The physiological relevance of these observations was investigated in C. elegans by transgenic expression of conserved UNC-45 missense variants, which showed impaired myosin binding for one and defective muscle function for three. Together, our results demonstrate that UNC-45B impairment manifests as a chaperonopathy with progressive muscle pathology, which discovers the previously unknown conserved role of UNC-45B in myofibrillar organization.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/fisiologia , Doenças Musculares/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Alelos , Animais , Caenorhabditis elegans , Feminino , Variação Genética , Humanos , Mutação com Perda de Função , Masculino , Músculo Esquelético/patologia , Miofibrilas , Miosinas , Sarcômeros/metabolismo , Análise de Sequência de RNA , Transgenes , Sequenciamento do Exoma , Adulto Jovem
6.
Acta Neuropathol ; 145(2): 235-255, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36512060

RESUMO

DnaJ homolog, subfamily B, member 4, a member of the heat shock protein 40 chaperones encoded by DNAJB4, is highly expressed in myofibers. We identified a heterozygous c.270 T > A (p.F90L) variant in DNAJB4 in a family with a dominantly inherited distal myopathy, in which affected members have specific features on muscle pathology represented by the presence of cytoplasmic inclusions and the accumulation of desmin, p62, HSP70, and DNAJB4 predominantly in type 1 fibers. Both Dnajb4F90L knockin and knockout mice developed muscle weakness and recapitulated the patient muscle pathology in the soleus muscle, where DNAJB4 has the highest expression. These data indicate that the identified variant is causative, resulting in defective chaperone function and selective muscle degeneration in specific muscle fibers. This study demonstrates the importance of DNAJB4 in skeletal muscle proteostasis by identifying the associated chaperonopathy.


Assuntos
Miopatias Distais , Proteínas de Choque Térmico HSP40 , Animais , Camundongos , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Músculo Esquelético/patologia , Chaperonas Moleculares/genética , Debilidade Muscular/patologia , Miopatias Distais/patologia , Camundongos Knockout
7.
Hum Mutat ; 43(2): 169-179, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34837441

RESUMO

A centronuclear myopathy (CNM) is a group of inherited congenital diseases showing clinically progressive muscle weakness associated with the presence of centralized myonuclei, diagnosed by genetic testing and muscle biopsy. The gene encoding dynamin 2, DNM2, has been identified as a causative gene for an autosomal dominant form of CNM. However, the information of a DNM2 variant alone is not always sufficient to gain a definitive diagnosis as the pathogenicity of many gene variants is currently unknown. In this study, we identified five novel DNM2 variants in our cohort. To establish the pathogenicity of these variants without using clinicopathological information, we used a simple in cellulo imaging-based assay for T-tubule-like structures to provide quantitative data that enable objective determination of pathogenicity by novel DNM2 variants. With this assay, we demonstrated that the phenotypes induced by mutant dynamin 2 in cellulo are well correlated with biochemical gain-of-function features of mutant dynamin 2 as well as the clinicopathological phenotypes of each patient. Our approach of combining an in cellulo assay with clinical information of the patients also explains the course of a disease progression by the pathogenesis of each variant in DNM2-associated CNM.


Assuntos
Dinamina II , Miopatias Congênitas Estruturais , Dinamina II/genética , Humanos , Músculo Esquelético/patologia , Mutação , Miopatias Congênitas Estruturais/genética , Virulência
8.
J Biol Chem ; 296: 100077, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33187981

RESUMO

Membrane remodeling is required for dynamic cellular processes such as cell division, polarization, and motility. BAR domain proteins and dynamins are key molecules in membrane remodeling that work together for membrane deformation and fission. In striated muscles, sarcolemmal invaginations termed T-tubules are required for excitation-contraction coupling. BIN1 and DNM2, which encode a BAR domain protein BIN1 and dynamin 2, respectively, have been reported to be causative genes of centronuclear myopathy (CNM), a hereditary degenerative disease of skeletal muscle, and deformation of T-tubules is often observed in the CNM patients. However, it remains unclear how BIN1 and dynamin 2 are implicated in T-tubule biogenesis and how mutations in these molecules cause CNM to develop. Here, using an in cellulo reconstitution assay, we demonstrate that dynamin 2 is required for stabilization of membranous structures equivalent to T-tubules. GTPase activity of wild-type dynamin 2 is suppressed through interaction with BIN1, whereas that of the disease-associated mutant dynamin 2 remains active due to lack of the BIN1-mediated regulation, thus causing aberrant membrane remodeling. Finally, we show that in cellulo aberrant membrane remodeling by mutant dynamin 2 variants is correlated with their enhanced membrane fission activities, and the results can explain severity of the symptoms in patients. Thus, this study provides molecular insights into dysregulated membrane remodeling triggering the pathogenesis of DNM2-related CNM.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Dinamina II/metabolismo , Músculo Esquelético/metabolismo , Miopatias Congênitas Estruturais/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Western Blotting , Dinamina II/genética , Células HEK293 , Humanos , Imunoprecipitação , Microscopia de Fluorescência , Miopatias Congênitas Estruturais/genética , Nanotubos/química , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética
9.
Curr Opin Neurol ; 35(5): 629-636, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35959526

RESUMO

PURPOSE OF REVIEW: GNE myopathy is a rare autosomal recessive disease caused by biallelic variants in the GNE gene, which encodes an enzyme involved in sialic acid biosynthesis. No drugs are approved for the treatment of GNE myopathy. Following proof-of-concept of sialic acid supplementation efficacy in mouse models, multiple clinical trials have been conducted. Here, we review clinical trials of sialic acid supplementation therapies and provide new insights into the additional clinical features of GNE myopathy. RECENT FINDINGS: Clinical trials of sialic acid supplementation have been conducted in Europe, the USA, Japan, and South Korea. Some clinical trials of NeuAc-extended release tablets demonstrated amelioration of decline in upper extremity muscle strength; however, no significant improvement was observed in phase 3 trials in Europe and USA. A phase 2 trial of ManNAc showed slowed decline of both upper and lower extremity strength. GNE myopathy patient registries have been established in Europe and Japan, and have provided information on extramuscular manifestations such as thrombocytopenia, respiratory dysfunction, and sleep apnea syndrome. Sensitive and reliable biomarkers, and a disease-specific functional activity scale, have also been investigated. SUMMARY: We discuss recent advances in establishing a GNE myopathy cure, and discuss other prospective therapeutic options, including gene therapy.


Assuntos
Miopatias Distais , Ácido N-Acetilneuramínico , Animais , Modelos Animais de Doenças , Miopatias Distais/tratamento farmacológico , Miopatias Distais/genética , Terapia Genética , Humanos , Camundongos , Mutação , Ácido N-Acetilneuramínico/uso terapêutico
10.
J Transl Med ; 20(1): 517, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348371

RESUMO

BACKGROUND: Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant muscular disorder characterized by asymmetric muscle wasting and weakness. FSHD can be subdivided into two types: FSHD1, caused by contraction of the D4Z4 repeat on chromosome 4q35, and FSHD2, caused by mild contraction of the D4Z4 repeat plus aberrant hypomethylation mediated by genetic variants in SMCHD1, DNMT3B, or LRIF1. Genetic diagnosis of FSHD is challenging because of the complex procedures required. METHODS: We applied Nanopore CRISPR/Cas9-targeted resequencing for the diagnosis of FSHD by simultaneous detection of D4Z4 repeat length and methylation status at nucleotide level in genetically-confirmed and suspected patients. RESULTS: We found significant hypomethylation of contracted 4q-D4Z4 repeats in FSHD1, and both 4q- and 10q-D4Z4 repeats in FSHD2. We also found that the hypomethylation in the contracted D4Z4 in FSHD1 is moderately correlated with patient phenotypes. CONCLUSIONS: Our method contributes to the development for the diagnosis of FSHD using Nanopore long-read sequencing. This finding might give insight into the mechanisms by which repeat contraction causes disease pathogenesis.


Assuntos
Distrofia Muscular Facioescapuloumeral , Humanos , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/diagnóstico , Proteínas de Homeodomínio/genética , Metilação de DNA/genética , Cromossomos/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo
11.
Neuropathol Appl Neurobiol ; 48(3): e12787, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34927285

RESUMO

AIMS: Oculopharyngodistal myopathy (OPDM) is caused by the expansion of CGG repeats in NOTCH2NLC (OPDM_NOTCH2NLC) GIPC1 (OPDM_GIPC1), or LRP12 (OPDM_LRP12). Neuronal intranuclear inclusion disease (NIID) is clinically distinct from OPDM but is also caused by the expansion of CGG repeats in NOTCH2NLC, which may be an indicator of intranuclear inclusion in skin biopsy. We investigated the presence of intranuclear inclusions in skin biopsies from patients with OPDM and muscle diseases with a similar pathology to evaluate whether they will have similar diagnostic findings on skin biopsy. METHODS: We analysed the frequency of p62-positive intranuclear inclusions in sweat gland cells, adipocytes and fibroblasts in skin biopsy samples from patients with OPDM (OPDM_NOTCH2NLC [n = 2], OPDM_GIPC1 [n = 6] and OPDM_LRP12 [n = 3]), NIID (n = 1), OPMD (n = 1), IBM (n = 4) and GNE myopathy (n = 2). RESULTS: The p62-postive intranuclear inclusions were observed in all three cell types in both patients with OPDM_NOTCH2NLC and a patient with NIID, in at least one cell type in all six patients with OPDM_GIPC1, and all in three cell types in one of the three patients with OPDM_LRP12. These findings were not observed in patients with OPMD, IBM or GNE myopathy. CONCLUSION: Intranuclear inclusions in skin biopsy samples are not specific to NIID and are found in all three types of genetically confirmed OPDM, suggesting that the underlying mechanism of OPDM may be similar to NIID, regardless of causative genes.


Assuntos
Corpos de Inclusão Intranuclear , Distrofias Musculares , Biópsia , Humanos , Corpos de Inclusão Intranuclear/patologia , Distrofias Musculares/genética , Doenças Neurodegenerativas
12.
Artigo em Inglês | MEDLINE | ID: mdl-35470251

RESUMO

BACKGROUND AND OBJECTIVES: Pompe disease is reportedly less prevalent in Japan than in neighbouring countries, raising a possibility that some patients may be overlooked. Therefore, all muscle biopsy samples received at our institute were screened for Pompe disease to determine the accuracy of the disease prevalence. METHODS: The acid α-glucosidase (GAA) activity was assayed using 10 µm frozen muscle sections from 2408 muscle biopsies received between July 2015 and January 2018. Genetic analysis was performed for samples with decreased activity. The number of myopathologically diagnosed patients was retrospectively assessed. RESULTS: The GAA activity was distributed similarly to previous results from dried blood spot screening. GAA activity measured using muscle sections corresponded to that measured using muscle blocks. Of 163 patients with GAA activity <3 nmol/hour/mg protein, 43 (26%) patients had homozygous pseudodeficiency alleles in GAA (p.G576S and p.E689K). In the retrospective analysis, the number of patients diagnosed with Pompe disease via muscle biopsies decreased to zero over time. DISCUSSION: Muscle pathology is an accurate method to diagnose Pompe disease. It is unlikely that a significant number of patients with Pompe disease are overlooked. Pathological variants were rare, and the majority carried a pseudodeficiency allele, which further supports our conclusion.

13.
Muscle Nerve ; 65(3): 284-290, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34716939

RESUMO

INTRODUCTION: We previously identified UDP-N-acetylglucosamine 2-epimerase (GNE) myopathy patients with sleep apnea and a past history of thrombocytopenia, but without disease-specific cardiac involvement. This study aimed to clarify the occurrence, severity, and serial changes of these complications. METHODS: Thirty-three genetically confirmed GNE myopathy patients who participated in a 5-y longitudinal observational history study underwent platelet count and platelet-associated immunoglobulin G (PA-IgG) measurements, a sleep study, and electrocardiography (ECG), Holter ECG, and echocardiogram examinations. RESULTS: Among the 33 patients, three had low platelet counts and 17 out of 26 were PA-IgG positive. No patient exhibited bleeding tendencies, and 3 out of 28 had low platelet counts. Muscle weakness was more pronounced, and summed MMT and grip power significantly lower, in PA-IgG-positive patients than in PA-IgG-negative patients. Of 19 patients, 7, 4, and 3 who underwent a sleep study had mild, moderate, and severe sleep apnea, respectively, and three started continuous positive airway pressure (CPAP). The respiratory disturbance index was not significantly correlated with physical evaluation items or forced vital capacity. All patients underwent ECG, 32 underwent cardiac ultrasound, and 25 underwent Holter ECG. No disease-specific cardiac involvement was noted, no serial changes during the follow-up period were observed for ECG and echocardiography, and none of the patients required therapy for cardiac abnormalities. DISCUSSION: PA-IgG is a potential disease biomarker in GNE myopathy patients, although its significance needs to be clarified. While none of the patients in this study experienced cardiomyopathy or arrythmia due to myopathy, sleep apnea was identified as a frequent complication.


Assuntos
Miopatias Distais , Doenças Musculares , Síndromes da Apneia do Sono , Trombocitopenia , Humanos , Complexos Multienzimáticos , Doenças Musculares/diagnóstico , Síndromes da Apneia do Sono/diagnóstico
14.
Int J Mol Sci ; 23(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35682949

RESUMO

Centronuclear myopathy (CNM) is a congenital myopathy characterised by centralised nuclei in skeletal myofibers. T-tubules, sarcolemmal invaginations required for excitation-contraction coupling, are disorganised in the skeletal muscles of CNM patients. Previous studies showed that various endocytic proteins are involved in T-tubule biogenesis and their dysfunction is tightly associated with CNM pathogenesis. DNM2 and BIN1 are two causative genes for CNM that encode essential membrane remodelling proteins in endocytosis, dynamin 2 and BIN1, respectively. In this review, we overview the functions of dynamin 2 and BIN1 in T-tubule biogenesis and discuss how their dysfunction in membrane remodelling leads to CNM pathogenesis.


Assuntos
Dinamina II , Miopatias Congênitas Estruturais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Dinamina II/genética , Dinamina II/metabolismo , Endocitose/genética , Humanos , Músculo Esquelético/metabolismo , Mutação , Miopatias Congênitas Estruturais/metabolismo , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
15.
Hum Genet ; 139(2): 247-255, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31919629

RESUMO

Duchenne muscular dystrophy (DMD) is caused by a nonsense or frameshift mutation in the DMD gene, while its milder form, Becker muscular dystrophy (BMD) is caused by an in-frame deletion/duplication or a missense mutation. Interestingly, however, some patients with a nonsense mutation exhibit BMD phenotype, which is mostly attributed to the skipping of the exon containing the nonsense mutation, resulting in in-frame deletion. This study aims to find BMD cases with nonsense/frameshift mutations in DMD and to investigate the exon skipping rate of those nonsense/frameshift mutations. We searched for BMD cases with nonsense/frameshift mutations in DMD in the Japanese Registry of Muscular Dystrophy. For each DMD mutation identified, we constructed minigene plasmids containing one exon with/without a mutation and its flanking intronic sequence. We then introduced them into HeLa cells and measured the skipping rate of transcripts of the minigene by RT-qPCR. We found 363 cases with a nonsense/frameshift mutation in DMD gene from a total of 1497 dystrophinopathy cases in the registry. Among them, 14 had BMD phenotype. Exon skipping rates were well correlated with presence or absence of dystrophin, suggesting that 5% exon skipping rate is critical for the presence of dystrophin in the sarcolemma, leading to milder phenotypes. Accurate quantification of the skipping rate is important in understanding the exact functions of the nonsense/frameshift mutations in DMD and for interpreting the phenotypes of the BMD patients.


Assuntos
Códon sem Sentido , Distrofina/genética , Éxons/genética , Mutação da Fase de Leitura , Distrofia Muscular de Duchenne/genética , Adolescente , Adulto , Criança , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
Ann Neurol ; 86(2): 193-202, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31155743

RESUMO

OBJECTIVE: Cytochrome c oxidase (COX) deficiency is a major mitochondrial respiratory chain defect that has vast genetic and phenotypic heterogeneity. This study aims to identify novel causative genes of COX deficiency with only striated muscle-specific symptoms. METHODS: Whole exome sequencing was performed in 2 unrelated individuals who were diagnosed with congenital myopathy and presented COX deficiency in muscle pathology. We assessed the COX6A2 variants using measurements of enzymatic activities and assembly of mitochondrial respiratory chain complexes in the samples from the patients and knockout mice. RESULTS: Both patients presented muscle weakness and hypotonia in 4 limbs along with facial muscle weakness. One patient had cardiomyopathy. Neither patient exhibited involvement from other organs. Whole exome sequencing identified biallelic missense variants in COX6A2, which is expressed only in the skeletal muscle and heart. The variants detected were homozygous c.117C > A (p.Ser39Arg) and compound heterozygous c.117C > A (p.Ser39Arg) and c.127T > C (p.Cys43Arg). We found specific reductions in complex IV activities in the skeletal muscle of both individuals. Assembly of complex IV and its supercomplex formation were impaired in the muscle. INTERPRETATION: This study indicates that biallelic variants in COX6A2 cause a striated muscle-specific form of COX deficiency. ANN NEUROL 2019;86:193-202.


Assuntos
Deficiência de Citocromo-c Oxidase/diagnóstico por imagem , Deficiência de Citocromo-c Oxidase/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Variação Genética/genética , Proteínas Musculares/genética , Músculo Esquelético/patologia , Adolescente , Sequência de Aminoácidos , Animais , Evolução Fatal , Células HEK293 , Células HeLa , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linhagem
18.
Hum Mol Genet ; 26(16): 3081-3093, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28505249

RESUMO

Sialic acids are monosaccharides found in terminal sugar chains of cell surfaces and proteins; they have various biological functions and have been implicated in health and disease. Genetic defects of the GNE gene which encodes a critical bifunctional enzyme for sialic acid biosynthesis, lead to GNE myopathy, a disease manifesting with progressive muscle atrophy and weakness. The likely mechanism of disease is a lack of sialic acids. There remains, however, an unexplained link between hyposialylation and the muscle atrophy and weakness. In this study, we found that muscle proteins were highly modified by S-nitrosylation, and that oxidative stress-responsive genes were significantly upregulated, in hyposialylated muscles from human GNE myopathy patients and model mice. In both in vitro and in vivo models, the production of reactive oxygen species (ROS) was elevated with cellular hyposialylation, and increasing overall sialylation by extrinsic sialic acid intake reduced ROS and protein S-nitrosylation. More importantly, the antioxidant, oral N-acetylcysteine led to amelioration of the muscle atrophy and weakness in Gne mutant mice. Our data provide evidence of additional important function of sialic acids as a ROS scavenger in skeletal muscles, expanding our understanding on how sialic acid deficiency contributes to disease pathology, and identify oxidative stress as a therapeutic target in GNE myopathy.


Assuntos
Miopatias Distais/metabolismo , Miopatias Distais/patologia , Ácido N-Acetilneuramínico/deficiência , Estresse Oxidativo/fisiologia , Acetilcisteína/metabolismo , Acetilcisteína/uso terapêutico , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Ácido N-Acetilneuramínico/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
Muscle Nerve ; 58(2): 286-292, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29603301

RESUMO

INTRODUCTION: GNE myopathy is an adult-onset muscle disorder characterized by impaired sialylation of (muscle) glycans, detectable by lectin histochemistry. We describe a standardized method to quantify (lectin-) fluorescence in muscle sections, applicable for diagnosis and response to therapy for GNE myopathy. METHODS: Muscle sections were fluorescently labeled with the sialic acid-binding Sambucus nigra agglutinin (SNA) lectin and antibodies to sarcolemma residence protein caveolin-3 (CAV-3). Entire tissue sections were imaged in tiles and fluorescence was quantified. RESULTS: SNA fluorescence co-localizing with CAV-3 was ∼50% decreased in GNE myopathy biopsies compared with muscle-matched controls, confirming previous qualitative results. DISCUSSION: This quantitative fluorescence method can accurately determine sialylation status of GNE myopathy muscle biopsies. This method is adaptable for expression of other membrane-associated muscle proteins, and may be of benefit for disorders in which therapeutic changes in expression are subtle and difficult to assess by other methods. Muscle Nerve 58: 286-292, 2018.


Assuntos
Miopatias Distais/patologia , Lectinas , Músculo Esquelético/patologia , Adulto , Caveolina 3/genética , Miopatias Distais/genética , Feminino , Corantes Fluorescentes , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Lectinas de Plantas , Proteínas Inativadoras de Ribossomos , Sarcolema/patologia , Sarcolema/ultraestrutura
20.
Hum Mol Genet ; 24(3): 637-48, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25227914

RESUMO

The store-operated Ca(2+) release-activated Ca(2+) (CRAC) channel is activated by diminished luminal Ca(2+) levels in the endoplasmic reticulum and sarcoplasmic reticulum (SR), and constitutes one of the major Ca(2+) entry pathways in various tissues. Tubular aggregates (TAs) are abnormal structures in the skeletal muscle, and although their mechanism of formation has not been clarified, altered Ca(2+) homeostasis related to a disordered SR is suggested to be one of the main contributing factors. TA myopathy is a hereditary muscle disorder that is pathologically characterized by the presence of TAs. Recently, dominant mutations in the STIM1 gene, encoding a Ca(2+) sensor that controls CRAC channels, have been identified to cause tubular aggregate myopathy (TAM). Here, we identified heterozygous missense mutations in the ORAI1 gene, encoding the CRAC channel itself, in three families affected by dominantly inherited TAM with hypocalcemia. Skeletal myotubes from an affected individual and HEK293 cells expressing mutated ORAI1 proteins displayed spontaneous extracellular Ca(2+) entry into cells without diminishment of luminal Ca(2+) or the association with STIM1. Our results indicate that STIM1-independent activation of CRAC channels induced by dominant mutations in ORAI1 cause altered Ca(2+) homeostasis, resulting in TAM with hypocalcemia.


Assuntos
Canais de Cálcio/genética , Hipocalcemia/genética , Fibras Musculares Esqueléticas/patologia , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Adulto , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Criança , Pré-Escolar , Células HEK293 , Heterozigoto , Humanos , Masculino , Fibras Musculares Esqueléticas/metabolismo , Mutação de Sentido Incorreto , Miopatias Congênitas Estruturais/complicações , Proteína ORAI1 , Linhagem , Molécula 1 de Interação Estromal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA