RESUMO
Recently, the missing link between homogeneous and heterogeneous catalysis has been found and it was named single-atom catalysis (SAC). However, the SAC field still faces important challenges, one of which is controlling the bonding/coordination between the single atoms and the support in order to compensate for the increase in surface energy when the particle size is reduced due to atomic dispersion. Excellent candidates to meet this requirement are carbon nitride (CN)-based materials. Metal atoms can be firmly trapped in nitrogen-rich coordination sites in CN materials, which makes them a unique class of hosts for preparing single-atom catalysts (SACs). As one of the most promising two-dimensional supports to stabilize isolated metal atoms, CN materials have been increasingly employed for preparing SACs. Herein, we will cover the most recent advances in single-atoms supported by CN materials. In this review, the most important characterization techniques and the challenges faced in this topic will be discussed, and the commonly employed synthetic methods will be delineated for different CN materials. Finally, the catalytic performance of SACs based on carbon nitrides will be reviewed with a special focus on their photocatalytic applications. In particular, we will prove CN as a non-innocent support. The relationship between single-atoms and carbon nitride supports is two-way, where the single-atoms can change the electronic properties of the CN support, while the electronic features of the CN matrix can tune the catalytic activity of the single sites in photocatalytic reactions. Finally, we highlight the frontiers in the field, including analytical method development, truly controlled synthetic methods, allowing the fine control of loading and multi-element synthesis, and how understanding the two-way exchange behind single-atoms and CN supports can push this topic to the next level.
RESUMO
Green hydrogen is the key to the chemical industry achieving net zero emissions. The chemical industry is responsible for almost 2% of all CO2 emissions, with half of it coming from the production of simple commodity chemicals, such as NH3, H2O2, methanol, and aniline. Despite electrolysis driven by renewable power sources emerging as the most promising way to supply all the green hydrogen required in the production chain of these chemicals, in this review, it is worth noting that the photocatalytic route may be underestimated and can hold a bright future for this topic. In fact, the production of H2 by photocatalysis still faces important challenges in terms of activity, engineering, and economic feasibility. However, photocatalytic systems can be tailored to directly convert sunlight and water (or other renewable proton sources) directly into chemicals, enabling a solar-to-chemical strategy. Here, a series of recent examples are presented, demonstrating that photocatalysis can be successfully employed to produce the most important commodity chemicals, especially on NH3, H2O2, and chemicals produced by reduction reactions. The replacement of fossil-derived H2 in the synthesis of these chemicals can be disruptive, essentially safeguarding the transition of the chemical industry to a low-carbon economy.
RESUMO
Size and morphology control during the synthesis of materials requires a molecular-level understanding of how the addition of surface ligands regulates nucleation and growth. In this work, this control is achieved by using three carboxylic acids (tartaric, benzoic, and citric) during sonochemical syntheses. The presence of carboxylic acids affects the kinetics of the nucleation process, alters the growth rate, and governs the size and morphology. Samples synthesized with citric acid revealed excellent photocatalytic activity for the degradation process of Rhodamine B, and recyclability experiments demonstrate that it retains 91% of its photocatalytic activity after four recycles. Scavenger experiments indicate that both the hydroxyl radical and the hole are key species for the success of the transformation. A reaction pathway is proposed that involves a series of dissolution-hydration-dehydration and precipitation processes, mediated by the complexation of Ag+. We believe these studies contribute to a fundamental understanding of the crystallization process and provide guidance as to how carboxylic acids can influence the synthesis of materials with controlled size and morphology, which is promising for multiple other scientific fields, such as sensor and catalysis fields.