Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Genet ; 18(12): e1010548, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36574452

RESUMO

Variation in immune homeostasis, the state in which the immune system is maintained in the absence of stimulation, is highly variable across populations. This variation is attributed to both genetic and environmental factors. However, the identity and function of specific regulators have been difficult to identify in humans. We evaluated homeostatic antibody levels in the serum of the Collaborative Cross (CC) mouse genetic reference population. We found heritable variation in all antibody isotypes and subtypes measured. We identified 4 quantitative trait loci (QTL) associated with 3 IgG subtypes: IgG1, IgG2b, and IgG2c. While 3 of these QTL map to genome regions of known immunological significance (major histocompatibility and immunoglobulin heavy chain locus), Qih1 (associated with variation in IgG1) mapped to a novel locus on Chromosome 18. We further associated this locus with B cell proportions in the spleen and identify Methyl-CpG binding domain protein 1 under this locus as a novel regulator of homeostatic IgG1 levels in the serum and marginal zone B cells (MZB) in the spleen, consistent with a role in MZB differentiation to antibody secreting cells.


Assuntos
Camundongos de Cruzamento Colaborativo , Locos de Características Quantitativas , Camundongos , Humanos , Animais , Locos de Características Quantitativas/genética , Camundongos de Cruzamento Colaborativo/genética , Ativação Linfocitária , Imunoglobulina G/genética , Homeostase/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
2.
J Virol ; 97(7): e0071523, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37310228

RESUMO

Powassan virus (POWV) is an emerging tick-borne flavivirus that causes neuroinvasive diseases, including encephalitis, meningitis, and paralysis. Similar to other neuroinvasive flaviviruses, such as West Nile virus (WNV) and Japanese encephalitis virus (JEV), POWV disease presentation is heterogeneous, and the factors influencing disease outcome are not fully understood. We used Collaborative Cross (CC) mice to assess the impact of host genetic factors on POWV pathogenesis. We infected a panel of Oas1b-null CC lines with POWV and observed a range of susceptibility, indicating that host factors other than the well-characterized flavivirus restriction factor Oas1b modulate POWV pathogenesis in CC mice. Among the Oas1b-null CC lines, we identified multiple highly susceptible lines (0% survival), including CC071 and CC015, and two resistant lines, CC045 and CC057 (>75% survival). The susceptibility phenotypes generally were concordant among neuroinvasive flaviviruses, although we did identify one line, CC006, that was specifically resistant to JEV, suggesting that both pan-flavivirus and virus-specific mechanisms contribute to susceptibility phenotypes in CC mice. We found that POWV replication was restricted in bone marrow-derived macrophages from CC045 and CC057 mice, suggesting that resistance could result from cell-intrinsic restriction of viral replication. Although serum viral loads at 2 days postinfection were equivalent between resistant and susceptible CC lines, clearance of POWV from the serum was significantly enhanced in CC045 mice. Furthermore, CC045 mice had significantly lower viral loads in the brain at 7 days postinfection than did CC071 mice, suggesting that reduced central nervous system (CNS) infection contributes to the resistant phenotype of CC045 mice. IMPORTANCE Neuroinvasive flaviviruses, such as WNV, JEV, and POWV, are transmitted to humans by mosquitoes or ticks and can cause neurologic diseases, such as encephalitis, meningitis, and paralysis, and they can result in death or long-term sequelae. Although potentially severe, neuroinvasive disease is a rare outcome of flavivirus infection. The factors that determine whether someone develops severe disease after a flavivirus infection are not fully understood, but host genetic differences in polymorphic antiviral response genes likely contribute to the outcome of infection. We evaluated a panel of genetically diverse mice and identified lines with distinct outcomes following infection with POWV. We found that resistance to POWV pathogenesis corresponded to reduced viral replication in macrophages, more rapid clearance of virus in peripheral tissues, and reduced viral infection in the brain. These susceptible and resistant mouse lines will provide a system for investigating the pathogenic mechanisms of POWV and identifying polymorphic host genes that contribute to resistance.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Vírus da Encefalite Transmitidos por Carrapatos , Encefalite , Infecções por Flavivirus , Flavivirus , Vírus do Nilo Ocidental , Humanos , Camundongos , Animais , Flavivirus/genética , Camundongos de Cruzamento Colaborativo , Infecções por Flavivirus/genética , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Vírus da Encefalite Japonesa (Espécie)/genética , Suscetibilidade a Doenças , Paralisia , 2',5'-Oligoadenilato Sintetase/genética
3.
Mamm Genome ; 31(3-4): 69-76, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32124004

RESUMO

Scientists from 12 countries met at the International Mammalian Genome Conference (IMGC) to share advances in mammalian genetics and genomics research. The event was held in Strasbourg, France and represents the city's second time hosting the IMGC. A diverse attendance of pre-doctoral and post-doctoral trainees, young investigators, established researchers, clinicians, bioinformaticians, and computational biologists enjoyed a rich scientific program of 63 oral presentations, 65 posters, and 5 workshops in the fields of epigenetics, system genetics, developmental biology, cancer, human disease modeling, technical advances, and bioinformatics. This report presents selected highlights of this meeting which illustrate how recent advances in mammalian genetic approaches have improved our ability to decipher complex biological mechanisms.


Assuntos
Genoma/genética , Mamíferos/genética , Animais , Biologia Computacional/métodos , Epigenômica/métodos , Genômica/métodos , Humanos , Camundongos Endogâmicos C57BL
4.
bioRxiv ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38464063

RESUMO

The MiniMUGA genotyping array is a popular tool for genetic QC of laboratory mice and genotyping of samples from most types of experimental crosses involving laboratory strains, particularly for reduced complexity crosses. The content of the production version of the MiniMUGA array is fixed; however, there is the opportunity to improve array's performance and the associated report's usefulness by leveraging thousands of samples genotyped since the initial description of MiniMUGA in 2020. Here we report our efforts to update and improve marker annotation, increase the number and the reliability of the consensus genotypes for inbred strains and increase the number of constructs that can reliably be detected with MiniMUGA. In addition, we have implemented key changes in the informatics pipeline to identify and quantify the contribution of specific genetic backgrounds to the makeup of a given sample, remove arbitrary thresholds, include the Y Chromosome and mitochondrial genome in the ideogram, and improve robust detection of the presence of commercially available substrains based on diagnostic alleles. Finally, we have made changes to the layout of the report, to simplify the interpretation and completeness of the analysis and added a table summarizing the ideogram. We believe that these changes will be of general interest to the mouse research community and will be instrumental in our goal of improving the rigor and reproducibility of mouse-based biomedical research.

5.
G3 (Bethesda) ; 14(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39271181

RESUMO

The MiniMUGA genotyping array is a popular tool for genetic quality control of laboratory mice and genotyping samples from most experimental crosses involving laboratory strains, particularly for reduced complexity crosses. The content of the production version of the MiniMUGA array is fixed; however, there is the opportunity to improve the array's performance and the associated report's usefulness by leveraging thousands of samples genotyped since the initial description of MiniMUGA. Here, we report our efforts to update and improve marker annotation, increase the number and the reliability of the consensus genotypes for classical inbred strains and substrains, and increase the number of constructs reliably detected with MiniMUGA. In addition, we have implemented key changes in the informatics pipeline to identify and quantify the contribution of specific genetic backgrounds to the makeup of a given sample, remove arbitrary thresholds, include the Y Chromosome and mitochondrial genome in the ideogram, and improve robust detection of the presence of commercially available substrains based on diagnostic alleles. Finally, we have updated the layout of the report to simplify the interpretation and completeness of the analysis and added a section summarizing the ideogram in table format. These changes will be of general interest to the mouse research community and will be instrumental in our goal of improving the rigor and reproducibility of mouse-based biomedical research.


Assuntos
Biologia Computacional , Técnicas de Genotipagem , Animais , Camundongos , Técnicas de Genotipagem/métodos , Técnicas de Genotipagem/normas , Biologia Computacional/métodos , Genótipo , Controle de Qualidade , Alelos , Reprodutibilidade dos Testes , Análise de Sequência com Séries de Oligonucleotídeos/métodos
6.
Cell Rep ; 31(4): 107587, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32348764

RESUMO

Host genetic factors play a fundamental role in regulating humoral immunity to viral infection, including influenza A virus (IAV). Here, we utilize the Collaborative Cross (CC), a mouse genetic reference population, to study genetic regulation of variation in antibody response following IAV infection. CC mice show significant heritable variation in the magnitude, kinetics, and composition of IAV-specific antibody response. We map 23 genetic loci associated with this variation. Analysis of a subset of these loci finds that they broadly affect the antibody response to IAV as well as other viruses. Candidate genes are identified based on predicted variant consequences and haplotype-specific expression patterns, and several show overlap with genes identified in human mapping studies. These findings demonstrate that the host antibody response to IAV infection is under complex genetic control and highlight the utility of the CC in modeling and identifying genetic factors with translational relevance to human health and disease.


Assuntos
Interações Hospedeiro-Patógeno/genética , Influenza Humana/genética , Replicação Viral/genética , Humanos
7.
Cell Host Microbe ; 25(4): 484-498, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974083

RESUMO

Host genetic variation has a major impact on infectious disease susceptibility. The study of pathogen resistance genes, largely aided by mouse models, has significantly advanced our understanding of infectious disease pathogenesis. The Collaborative Cross (CC), a newly developed multi-parental mouse genetic reference population, serves as a tractable model system to study how pathogens interact with genetically diverse populations. In this review, we summarize progress utilizing the CC as a platform to develop improved models of pathogen-induced disease and to map polymorphic host response loci associated with variation in susceptibility to pathogens.


Assuntos
Doenças Transmissíveis/patologia , Predisposição Genética para Doença , Variação Genética , Interações Hospedeiro-Patógeno , Biologia de Sistemas/métodos , Animais , Modelos Animais de Doenças , Camundongos
8.
G3 (Bethesda) ; 8(2): 427-445, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29187420

RESUMO

Influenza A virus (IAV) is a respiratory pathogen that causes substantial morbidity and mortality during both seasonal and pandemic outbreaks. Infection outcomes in unexposed populations are affected by host genetics, but the host genetic architecture is not well understood. Here, we obtain a broad view of how heritable factors affect a mouse model of response to IAV infection using an 8 × 8 diallel of the eight inbred founder strains of the Collaborative Cross (CC). Expanding on a prior statistical framework for modeling treatment response in diallels, we explore how a range of heritable effects modify acute host response to IAV through 4 d postinfection. Heritable effects in aggregate explained ∼57% of the variance in IAV-induced weight loss. Much of this was attributable to a pattern of additive effects that became more prominent through day 4 postinfection and was consistent with previous reports of antiinfluenza myxovirus resistance 1 (Mx1) polymorphisms segregating between these strains; these additive effects largely recapitulated haplotype effects observed at the Mx1 locus in a previous study of the incipient CC, and are also replicated here in a CC recombinant intercross population. Genetic dominance of protective Mx1 haplotypes was observed to differ by subspecies of origin: relative to the domesticus null Mx1 allele, musculus acts dominantly whereas castaneus acts additively. After controlling for Mx1, heritable effects, though less distinct, accounted for ∼34% of the phenotypic variance. Implications for future mapping studies are discussed.


Assuntos
Teorema de Bayes , Predisposição Genética para Doença/genética , Proteínas de Resistência a Myxovirus/genética , Infecções por Orthomyxoviridae/genética , Animais , Modelos Animais de Doenças , Haplótipos , Humanos , Vírus da Influenza A/fisiologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Endogâmicos , Infecções por Orthomyxoviridae/virologia , Fenótipo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA