Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Infect Immun ; 92(6): e0002424, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38700335

RESUMO

Cryptococcus deneoformans is a yeast-type fungus that causes fatal meningoencephalitis in immunocompromised patients and evades phagocytic cell elimination through an escape mechanism. Memory T (Tm) cells play a central role in preventing the reactivation of this fungal pathogen. Among these cells, tissue-resident memory T (TRM) cells quickly respond to locally invaded pathogens. This study analyzes the kinetics of effector T (Teff) cells and Tm cells in the lungs after cryptococcal infection. Emphasis is placed on the kinetics and cytokine expression of TRM cells in the early phase of infection. CD4+ Tm cells exhibited a rapid increase by day 3, peaked at day 7, and then either maintained their levels or exhibited a slight decrease until day 56. In contrast, CD8+ Tm cells reached their peak on day 3 and thereafter decreased up to day 56 post-infection. These Tm cells were predominantly composed of CD69+ TRM cells and CD69+ CD103+ TRM cells. Disruption of the CARD9 gene resulted in reduced accumulation of these TRM cells and diminished interferon (IFN) -γ expression in TRM cells. TRM cells were derived from T cells with T cell receptors non-specific to ovalbumin in OT-II mice during cryptococcal infection. In addition, TRM cells exhibited varied behavior in different tissues. These results underscore the importance of T cells, which produce IFN-γ in the lungs during the early stage of infection, in providing early protection against cryptococcal infection through CARD9 signaling.


Assuntos
Antígenos CD , Antígenos de Diferenciação de Linfócitos T , Criptococose , Cryptococcus , Interferon gama , Lectinas Tipo C , Pulmão , Animais , Criptococose/imunologia , Criptococose/microbiologia , Interferon gama/metabolismo , Interferon gama/imunologia , Camundongos , Antígenos de Diferenciação de Linfócitos T/metabolismo , Cryptococcus/imunologia , Antígenos CD/metabolismo , Antígenos CD/genética , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Pulmão/imunologia , Pulmão/microbiologia , Células T de Memória/imunologia , Células T de Memória/metabolismo , Camundongos Endogâmicos C57BL , Memória Imunológica , Imunidade Inata , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Linfócitos T CD4-Positivos/imunologia
2.
J Immunol ; 205(3): 686-698, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32561568

RESUMO

IL-17A is a proinflammatory cytokine produced by many types of innate immune cells and Th17 cells and is involved in the elimination of extracellularly growing microorganisms, yet the role of this cytokine in the host defense against intracellularly growing microorganisms is not well known. Cryptococcus deneoformans is an opportunistic intracellular growth fungal pathogen that frequently causes fatal meningoencephalitis in patients with impaired immune responses. In the current study, we analyzed the role of IL-17A in the host defense against C. deneoformans infection. IL-17A was quickly produced by γδT cells at an innate immune phase in infected lungs. In IL-17A gene-disrupted mice, clearance of this fungal pathogen and the host immune response mediated by Th1 cells were significantly accelerated in infected lungs compared with wild-type mice. Similarly, killing of this fungus and production of inducible NO synthase and TNF-α were significantly enhanced in IL-17A gene-disrupted mice. In addition, elimination of this fungal pathogen, Th1 response, and expression of IL-12Rß2 and IFN-γ in NK and NKT cells were significantly suppressed by treatment with rIL-17A. The production of IL-12p40 and TNF-α from bone marrow-derived dendritic cells stimulated with C. deneoformans was significantly suppressed by rIL-17A. In addition, rIL-17A attenuated Th1 cell differentiation in splenocytes from transgenic mice highly expressing TCR for mannoprotein 98, a cryptococcal Ag, upon stimulation with recombinant mannoprotein 98. These data suggest that IL-17A may be involved in the negative regulation of the local host defense against C. deneoformans infection through suppression of the Th1 response.


Assuntos
Criptococose/imunologia , Cryptococcus/imunologia , Células Dendríticas/imunologia , Imunidade Inata , Interleucina-17/imunologia , Células Th1/imunologia , Animais , Criptococose/genética , Cryptococcus/genética , Interferon gama/genética , Interferon gama/imunologia , Interleucina-17/genética , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Interleucina-12/genética , Receptores de Interleucina-12/imunologia
3.
Infect Immun ; 83(2): 671-81, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25422263

RESUMO

Dectin-2 is a C-type lectin receptor that recognizes high mannose polysaccharides. Cryptococcus neoformans, a yeast-form fungal pathogen, is rich in polysaccharides in its cell wall and capsule. In the present study, we analyzed the role of Dectin-2 in the host defense against C. neoformans infection. In Dectin-2 gene-disrupted (knockout) (Dectin-2KO) mice, the clearance of this fungus and the inflammatory response, as shown by histological analysis and accumulation of leukocytes in infected lungs, were comparable to those in wild-type (WT) mice. The production of type 2 helper T (Th2) cytokines in lungs was higher in Dectin-2KO mice than in WT mice after infection, whereas there was no difference in the levels of production of Th1, Th17, and proinflammatory cytokines between these mice. Mucin production was significantly increased in Dectin-2KO mice, and this increase was reversed by administration of anti-interleukin 4 (IL-4) monoclonal antibody (MAb). The levels of expression of ß1-defensin, cathelicidin, surfactant protein A (Sp-A), and Sp-D in infected lungs were comparable between these mice. In in vitro experiments, IL-12p40 and tumor necrosis factor alpha (TNF-α) production and expression of CD86 and major histocompatibility complex (MHC) class II by bone marrow-derived dendritic cells and alveolar macrophages were completely abrogated in Dectin-2KO mice. Finally, the disrupted lysates of C. neoformans, but not of whole yeast cells, activated Dectin-2-triggered signaling in an assay with nuclear factor of activated T cells (NFAT)-green fluorescent protein (GFP) reporter cells expressing this receptor. These results suggest that Dectin-2 may oppose the Th2 response and IL-4-dependent mucin production in the lungs after infection with C. neoformans, and it may not be required for the production of Th1, Th17, and proinflammatory cytokines or for clearance of this fungal pathogen.


Assuntos
Criptococose/imunologia , Cryptococcus neoformans/imunologia , Lectinas Tipo C/genética , Células Th2/imunologia , Animais , Anticorpos Monoclonais/imunologia , Peptídeos Catiônicos Antimicrobianos/biossíntese , Antígeno B7-2/biossíntese , Células Cultivadas , Defensinas/biossíntese , Células Dendríticas/imunologia , Feminino , Proteínas de Fluorescência Verde/genética , Antígenos de Histocompatibilidade Classe II/biossíntese , Inflamação/genética , Inflamação/imunologia , Subunidade p40 da Interleucina-12/biossíntese , Interleucina-4/imunologia , Lectinas Tipo C/imunologia , Pulmão/microbiologia , Pulmão/patologia , Pneumopatias Fúngicas/imunologia , Macrófagos Alveolares/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucinas/biossíntese , Proteína A Associada a Surfactante Pulmonar/biossíntese , Proteína D Associada a Surfactante Pulmonar/biossíntese , Células Th1/imunologia , Células Th17/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Catelicidinas
4.
Infect Immun ; 82(4): 1606-15, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24470469

RESUMO

Caspase recruitment domain-containing protein 9 (CARD9) is an adaptor molecule signal that is critical for NF-κB activation and is triggered through C-type lectin receptors (CLRs), which are pattern recognition receptors that recognize carbohydrate structures. Previous studies have reported that Cryptococcus neoformans, a fungal pathogen that causes meningoencephalitis in AIDS patients, is recognized through some CLRs, such as mannose receptors or DC-SIGN. However, the role of CARD9 in the host defense against cryptococcal infection remains to be elucidated. In the present study, we analyzed the role of CARD9 in the host defense against pulmonary infection with C. neoformans. CARD9 gene-disrupted (knockout [KO]) mice were highly susceptible to this infection, as shown by the reduced fungal clearance in the infected lungs of CARD9 KO mice, compared to that in wild-type (WT) mice. Gamma interferon (IFN-γ) production was strongly reduced in CARD9 KO mice during the innate-immunity phase of infection. Reduced IFN-γ synthesis was due to impaired accumulation of NK and memory phenotype T cells, which are major sources of IFN-γ innate-immunity-phase production; a reduction in the accumulation of these cells was correlated with reduced CCL4, CCL5, CXCL9, and CXCL10 synthesis. However, differentiation of Th17 cells, but not of Th1 cells, was impaired at the adaptive-immunity phase in CARD9 KO mice compared to WT mice, although there was no significant difference in the infection susceptibility between interleukin 17A (IL-17A) KO and WT mice. These results suggest that CARD9 KO mice are susceptible to C. neoformans infection probably due to the reduced accumulation of IFN-γ-expressing NK and memory phenotype T cells at the early stage of infection.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/fisiologia , Interferon gama/biossíntese , Pneumopatias Fúngicas/microbiologia , Linfócitos T/imunologia , Animais , Quimiocinas/biossíntese , Cryptococcus neoformans/genética , Modelos Animais de Doenças , Imunidade Inata/fisiologia , Pneumopatias Fúngicas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th1/citologia , Células Th17/citologia
5.
PLoS One ; 10(9): e0138291, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26384031

RESUMO

Type I interferons (IFNs) are secreted by many cell types upon stimulation via pattern recognition receptors and bind to IFN-α/ß receptor (IFNAR), which is composed of IFNAR1 and IFNAR2. Although type I IFNs are well known as anti-viral cytokines, limited information is available on their role during fungal infection. In the present study, we addressed this issue by examining the effect of IFNAR1 defects on the host defense response to Cryptococcus neoformans. In IFNAR1KO mice, the number of live colonies was lower and the host immune response mediated not only by Th1 but also by Th2 and Th17-related cytokines was more accelerated in the infected lungs than in WT mice. In addition, mucin production by bronchoepithelial cells and expression of MUC5AC, a major core protein of mucin in the lungs, were significantly higher in IFNAR1KO mice than in WT mice. This increase in mucin and MUC5AC production was significantly inhibited by treatment with neutralizing anti-IL-4 mAb. In contrast, administration of recombinant IFN-αA/D significantly suppressed the production of IL-4, but not of IFN-γ and IL-17A, in the lungs of WT mice after cryptococcal infection. These results indicate that defects of IFNAR1 led to improved clearance of infection with C. neoformans and enhanced synthesis of IFN-γ and the IL-4-dependent production of mucin. They also suggest that type I IFNs may be involved in the negative regulation of early host defense to this infection.


Assuntos
Criptococose/metabolismo , Interferon Tipo I/metabolismo , Interleucina-4/fisiologia , Pulmão/metabolismo , Mucinas/biossíntese , Transdução de Sinais , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/genética
6.
Cell Med ; 3(1-3): 97-102, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28058186

RESUMO

Feeder cells are generally required for establishment and maintenance of embryonic stem (ES)/induced pluripotent stem (iPS) cells. Increased demands for generation of those cells carrying various types of vectors (i.e., KO vectors and transgenes) also require feeder cells that confer resistance to any types of preexisting selective drugs. Unfortunately, the use of the feeders that are resistant to various drugs appears to be limited to a few laboratories. Here we generated a set of gene-engineered STO feeder cells that confer resistance to several commercially available drugs. The STO cells, which have long been used as a feeder for mouse ES and embryonal carcinoma (EC) cells, were transfected with pcBIH [carrying bleomycin resistance gene (ble) and hygromycin B phosphotransferase gene (Hyg)], pcBIP [carrying ble and puromycin resistance gene (puro)], or pcBSN [carrying ble and neomycin resistance gene (neo)]. The resulting stably transfectants (termed SHB for pcBIH, SPB for pcBIP, and SNB for pcBSN) exhibited bleomycin/hygromycin, bleomycin/puromycin, or bleomycin/neomycin, as expected. The morphology of these cells passaged over 18 generations was indistinguishable from that of parental STO cells. Of isolated clones, the SHB3, SPB3, and SNB2 clones successfully supported the growth of mouse ES cells in an undifferentiated state, when coculture was performed. PCR analysis revealed the presence of the selective markers in these clones, as expected. These SHB3, SPB3, and SNB2 cells will thus be useful for the acquisition and maintenance of genetically manipulated ES/iPS cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA