Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 54, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36694111

RESUMO

BACKGROUND: Sugarcane growth and yield are complex biological processes influenced by endophytic nitrogen-fixing bacteria, for which the molecular mechanisms involved are largely unknown. In this study, integrated metabolomic and RNA-seq were conducted to investigate the interaction between an endophytic bacterial strain, Burkholderia GXS16, and sugarcane tissue culture seedlings. RESULTS: During treatment, the colonization of GXS16 in sugarcane roots were determined, along with the enhanced activities of various antioxidant enzymes. Accordingly, 161, 113, and 37 differentially accumulated metabolites (DAMs) were found in the pairwise comparisons of adjacent stages. In addition, transcriptomic analyses obtained 1,371 (IN-vs-CN), 1,457 (KN-vs-IN), and 365 (LN-vs-KN) differentially expressed genes (DEGs), which were mainly involved in the pathways of glutathione metabolism and carbon metabolism. We then assessed the pattern of metabolite accumulation and gene expression in sugarcane during GXS16 colonization. The results showed that both DAMs and DGEs in the upregulated expression profiles were involved in the flavonoid biosynthesis pathway. Overall, p-coumaroyl-CoA in sugarcane roots transferred into homoeriodictyol chalcone and 5-deoxyleucopelargonidin due to the upregulation of the expression of genes shikimate O-hydroxycinnamoyltransferase (HCT), chalcone synthase (CHS), and phlorizin synthase (PGT1). CONCLUSIONS: This study provides insights into the gene regulatory mechanisms involved in the interaction between GXS16 and sugarcane roots, which will facilitate future applications of endophytic nitrogen-fixing bacteria to promote crop growth.


Assuntos
Fenômenos Biológicos , Bactérias Fixadoras de Nitrogênio , Saccharum , Transcriptoma , Regulação da Expressão Gênica de Plantas
2.
BMC Plant Biol ; 23(1): 573, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978424

RESUMO

BACKGROUND: Drought limits crop growth and is an important issue in commercial sugarcane (Saccharum officinarum) production. Drought tolerance in sugarcane induced by endophytic nitrogen-fixing bacteria is a complex biological process that ranges from altered gene expression and cellular metabolism to changes in growth and productivity. RESULTS: In this study, changes in physiological features and transcriptome related to drought tolerance in sugarcane conferred by the Burkholderia endophytic nitrogen-fixing bacterial strain GXS16 were investigated. Sugarcane samples inoculated with GXS16 exhibited significantly higher leaf relative water content than those without GXS16 inoculation during the drought stages. Sugarcane treated with GXS16 had lower levels of H2O2 and higher levels of abscisic acid than sugarcane not treated with GXS16 in the non-watering groups. Transcriptomic analysis of sugarcane roots identified multiple differentially expressed genes between adjacent stages under different treatments. Moreover, both trend and weighted correlation network analyses revealed that carotenoid biosynthesis, terpenoid backbone biosynthesis, starch and sucrose metabolism, and plant hormone signal transduction strongly contributed to the drought-tolerant phenotype of sugarcane induced by GXS16 treatment. Accordingly, a gene regulatory network including four differentially regulated genes from carotenoid biosynthesis (crtB, crtZ, ZEP and CYP707A) and three genes from terpenoid backbone biosynthesis (dxs, dxr, and PCME) was constructed. CONCLUSIONS: This study provides insights into the molecular mechanisms underlying the application of GXS16 treatment to enhance drought tolerance in sugarcane, which will lay the foundation for crop development and improve productivity.


Assuntos
Bactérias Fixadoras de Nitrogênio , Saccharum , Saccharum/metabolismo , Resistência à Seca , Bactérias Fixadoras de Nitrogênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Ácido Abscísico/metabolismo , Secas , Água/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Fungal Biol ; 126(5): 333-341, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35501029

RESUMO

Dendrobium officinale (Orchidaceae) is a traditional Chinese medicinal plant. Its growth is slow, however many dark septate endophytic fungi (DSEs) are considered useful to plant growth and as biocontrol agents against plant pathogens. The goals of this study were to identify a new DSE and evaluate its plant-growth promotion characteristics. Based on morphological and molecular phylogenetic evidence, a DSE fungal strain TK815 isolated from Dashiwei Tiankengs in Leye county Guangxi Province, China, was classified as a novel genus in the order Cheatothyriales, namely Tiankengomelania gen. nov. typified with T. guangxiense sp. nov. Tiankengomelania guangxiense TK815 can significantly promote the growth of D. officinale in stem length (11.25%), seedling height (16.97%), root length (10.34%), and dry weight (41.05%). This study discovered, described, and illustrated a new DSE fungus, and evaluated its biological function in contributing to the growth and production of the Chinese medicinal plant D. officinale.


Assuntos
Dendrobium , China , DNA Fúngico/genética , Dendrobium/microbiologia , Fungos , Filogenia
4.
Front Microbiol ; 13: 924283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814670

RESUMO

Some sugarcane germplasms can absorb higher amounts of nitrogen via atmospheric nitrogen fixation through the bacterial diazotrophs. Most endophytic diazotrophs usually penetrate through the root, colonize inside the plant, and fix the nitrogen. To assess the plant's bacterial association during root colonization, strain GXS16 was tagged with a plasmid-bear green fluorescent protein (GFP) gene. The results demonstrated that the strain can colonize roots all the way to the maturation zone. The strain GXS16 showed maximum nitrogenase enzyme activity at pH 8 and 30°C, and nitrogenase activity is less affected by different carbon sources. Further, strain GXS16 colonization response was investigated through plant hormones analysis and RNAseq. The results showed that the bacterial colonization gradually increased with time, and the H2O2 and malondialdehyde (MDA) content significantly increased at 1 day after inoculation. There were no substantial changes noticed in proline content, and the ethylene content was detected initially, but it decreased with time. The abscisic acid (ABA) content showed significant increases of 91.9, 43.9, and 18.7%, but conversely, the gibberellin (GA3) content decreased by 12.9, 28.5, and 45.2% at 1, 3, and 5 days after inoculation, respectively. The GXS16 inoculation significantly increased the activities of catalase (CAT), superoxide dismutase (SOD), polyphenol oxidase (PPO), ascorbate peroxidase (APX), and glutathione reductase (GR) at different timepoint. In contrast, the peroxisome (POD) activity had no changes detected during the treatment. In the case of RNAseq analysis, 2437, 6678, and 4568 differentially expressed genes (DEGs) were identified from 1, 3, and 5 days inoculated root samples, and 601 DEGs were shared in all samples. The number or the expression diversity of DEGs related to ethylene was much higher than that of ABA or GA, which indicated the critical role of ethylene in regulating the sugarcane roots response to GXS16 inoculation.

5.
Front Plant Sci ; 13: 829337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283913

RESUMO

Considering the significant role of genetic background in plant-microbe interactions and that most crop rhizospheric microbial research was focused on cultivars, understanding the diversity of root-associated microbiomes in wild progenitors and closely related crossable species may help to breed better cultivars. This study is aimed to fill a critical knowledge gap on rhizosphere and diazotroph bacterial diversity in the wild progenitors of sugarcane, the essential sugar and the second largest bioenergy crop globally. Using a high-throughput sequencing (HTS) platform, we studied the rhizosphere and diazotroph bacterial community of Saccharum officinarum L. cv. Badila (BRS), Saccharum barberi (S. barberi) Jesw. cv Pansahi (PRS), Saccharum robustum [S. robustum; (RRS), Saccharum spontaneum (S. spontaneum); SRS], and Saccharum sinense (S. sinense) Roxb. cv Uba (URS) by sequencing their 16S rRNA and nifH genes. HTS results revealed that a total of 6,202 bacteria-specific operational taxonomic units (OTUs) were identified, that were distributed as 107 bacterial groups. Out of that, 31 rhizobacterial families are commonly spread in all five species. With respect to nifH gene, S. barberi and S. spontaneum recorded the highest and lowest number of OTUs, respectively. These results were validated by quantitative PCR analysis of both genes. A total of 1,099 OTUs were identified for diazotrophs with a core microbiome of 9 families distributed among all the sugarcane species. The core microbiomes were spread across 20 genera. The increased microbial diversity in the rhizosphere was mainly due to soil physiochemical properties. Most of the genera of rhizobacteria and diazotrophs showed a positive correlation, and few genera negatively correlated with the soil properties. The results showed that sizeable rhizospheric diversity exists across progenitors and close relatives. Still, incidentally, the rhizosphere microbial abundance of progenitors of modern sugarcane was at the lower end of the spectrum, indicating the prospect of Saccharum species introgression breeding may further improve nutrient use and disease and stress tolerance of commercial sugarcane. The considerable variation for rhizosphere microbiome seen in Saccharum species also provides a knowledge base and an experimental system for studying the evolution of rhizobacteria-host plant association during crop domestication.

6.
Sci Rep ; 11(1): 5525, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750876

RESUMO

As the polyploidy progenitor of modern sugarcane, Saccharum spontaneum is considered to be a valuable resistance source to various biotic and abiotic stresses. However, little has been reported on the mechanism of drought tolerance in S. spontaneum. Herein, the physiological changes of S. spontaneum GXS87-16 at three water-deficit levels (mild, moderate, and severe) and after re-watering during the elongation stage were investigated. RNA sequencing was utilized for global transcriptome profiling of GXS87-16 under severe drought and re-watered conditions. There were significant alterations in the physiological parameters of GXS87-16 in response to drought stress and then recovered differently after re-watering. A total of 1569 differentially expressed genes (DEGs) associated with water stress and re-watering were identified. Notably, the majority of the DEGs were induced by stress. GO functional annotations and KEGG pathway analysis assigned the DEGs to 47 GO categories and 93 pathway categories. The pathway categories were involved in various processes, such as RNA transport, mRNA surveillance, plant hormone signal transduction, and plant-pathogen interaction. The reliability of the RNA-seq results was confirmed by qRT-PCR. This study shed light on the regulatory processes of drought tolerance in S. spontaneum and identifies useful genes for genetic improvement of drought tolerance in sugarcane.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Saccharum/metabolismo , Desidratação/genética , Desidratação/metabolismo , Folhas de Planta/genética , Saccharum/genética
7.
MycoKeys ; 56: 1-11, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31327928

RESUMO

Three new species isolated from sugarcane rhizosphere in China, namely Conlariumbaiseense sp. nov., C.nanningense sp. nov., and C.sacchari sp. nov., are described and illustrated. Molecular evidence (phylogenetic analysis of combined LSU, SSU, ITS and RPB2 sequence data) and phenotypical characters support their independent status from related and similar species. The new species, as dark spetate endophytes, inhabit sugarcane rhizosphere and can form a symbiosis with sugarcane.

8.
Sci Rep ; 7(1): 17659, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247208

RESUMO

In plants, both abscisic acid (ABA) dependent and independent pathways form the basis for the response to environmental stresses. Sucrose non-fermenting 1-related protein kinase 2 (SnRK2) plays a central role in plant stress signal transduction. However, complete annotation and specific expression patterns of SnRK2s in sugarcane remain unclear. For the present study, we performed a full-length cDNA library survey of sugarcane, thus identifying ten SoSnRK2 genes via phylogenetic, local BLAST methods, and various bioinformatics analyses. Phylogenetic analysis indicated division of SoSnRK2 genes into three subgroups, similar to other plant species. Gene structure comparison with Arabidopsis suggested a unique evolutionary imprint of the SnRK2 gene family in sugarcane. Both sequence alignment and structural annotation provided an overview of the conserved N-terminal and variations of the C-terminal, suggesting functional divergence. Transcript and transient expression assays revealed SoSnRK2s to be involved in the responses to diverse stress signals, and strong ABA induction of SoSnRK2s in subgroup III. Co-expression network analyses indicated the existence of both conserved and variable biological functions among different SoSnRK2s members. In summary, this comprehensive analysis will facilitate further studies of the SoSnRK2 family and provide useful information for the functional validation of SoSnRK2s.


Assuntos
Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Saccharum/genética , Estresse Fisiológico/fisiologia , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biologia Computacional , Sequência Conservada/genética , Secas , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Homologia Estrutural de Proteína
9.
Sci Rep ; 6: 25698, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27170459

RESUMO

Water stress causes considerable yield losses in sugarcane. To investigate differentially expressed genes under water stress, a pot experiment was performed with the sugarcane variety GT21 at three water-deficit levels (mild, moderate, and severe) during the elongation stage and gene expression was analyzed using microarray technology. Physiological parameters of sugarcane showed significant alterations in response to drought stress. Based on the expression profile of 15,593 sugarcane genes, 1,501 (9.6%) genes were differentially expressed under different water-level treatments; 821 genes were upregulated and 680 genes were downregulated. A gene similarity analysis showed that approximately 62.6% of the differentially expressed genes shared homology with functional proteins. In a Gene Ontology (GO) analysis, 901 differentially expressed genes were assigned to 36 GO categories. Moreover, 325 differentially expressed genes were classified into 101 pathway categories involved in various processes, such as the biosynthesis of secondary metabolites, ribosomes, carbon metabolism, etc. In addition, some unannotated genes were detected; these may provide a basis for studies of water-deficit tolerance. The reliability of the observed expression patterns was confirmed by RT-PCR. The results of this study may help identify useful genes for improving drought tolerance in sugarcane.


Assuntos
Secas , Perfilação da Expressão Gênica/métodos , Folhas de Planta/genética , Proteínas de Plantas/genética , Saccharum/genética , Transdução de Sinais/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Folhas de Planta/crescimento & desenvolvimento , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharum/crescimento & desenvolvimento , Estresse Fisiológico/genética , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA