Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 166(2): 492-505, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27419873

RESUMO

The epigenome orchestrates genome accessibility, functionality, and three-dimensional structure. Because epigenetic variation can impact transcription and thus phenotypes, it may contribute to adaptation. Here, we report 1,107 high-quality single-base resolution methylomes and 1,203 transcriptomes from the 1001 Genomes collection of Arabidopsis thaliana. Although the genetic basis of methylation variation is highly complex, geographic origin is a major predictor of genome-wide DNA methylation levels and of altered gene expression caused by epialleles. Comparison to cistrome and epicistrome datasets identifies associations between transcription factor binding sites, methylation, nucleotide variation, and co-expression modules. Physical maps for nine of the most diverse genomes reveal how transposons and other structural variants shape the epigenome, with dramatic effects on immunity genes. The 1001 Epigenomes Project provides a comprehensive resource for understanding how variation in DNA methylation contributes to molecular and non-molecular phenotypes in natural populations of the most studied model plant.


Assuntos
Arabidopsis/genética , Epigênese Genética , Metilação de DNA , Epigenômica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Transcriptoma
2.
Nature ; 618(7965): 557-565, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198485

RESUMO

Centromeres are critical for cell division, loading CENH3 or CENPA histone variant nucleosomes, directing kinetochore formation and allowing chromosome segregation1,2. Despite their conserved function, centromere size and structure are diverse across species. To understand this centromere paradox3,4, it is necessary to know how centromeric diversity is generated and whether it reflects ancient trans-species variation or, instead, rapid post-speciation divergence. To address these questions, we assembled 346 centromeres from 66 Arabidopsis thaliana and 2 Arabidopsis lyrata accessions, which exhibited a remarkable degree of intra- and inter-species diversity. A. thaliana centromere repeat arrays are embedded in linkage blocks, despite ongoing internal satellite turnover, consistent with roles for unidirectional gene conversion or unequal crossover between sister chromatids in sequence diversification. Additionally, centrophilic ATHILA transposons have recently invaded the satellite arrays. To counter ATHILA invasion, chromosome-specific bursts of satellite homogenization generate higher-order repeats and purge transposons, in line with cycles of repeat evolution. Centromeric sequence changes are even more extreme in comparison between A. thaliana and A. lyrata. Together, our findings identify rapid cycles of transposon invasion and purging through satellite homogenization, which drive centromere evolution and ultimately contribute to speciation.


Assuntos
Arabidopsis , Centrômero , Elementos de DNA Transponíveis , DNA Satélite , Evolução Molecular , Arabidopsis/genética , Arabidopsis/metabolismo , Centrômero/genética , Centrômero/metabolismo , Elementos de DNA Transponíveis/genética , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , DNA Satélite/genética , Conversão Gênica
3.
Plant Cell ; 36(1): 85-111, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37683092

RESUMO

Long noncoding RNAs (lncRNAs) are understudied and underannotated in plants. In mammals, lncRNA loci are nearly as ubiquitous as protein-coding genes, and their expression is highly variable between individuals of the same species. Using Arabidopsis thaliana as a model, we aimed to elucidate the true scope of lncRNA transcription across plants from different regions and study its natural variation. We used transcriptome deep sequencing data sets spanning hundreds of natural accessions and several developmental stages to create a population-wide annotation of lncRNAs, revealing thousands of previously unannotated lncRNA loci. While lncRNA transcription is ubiquitous in the genome, most loci appear to be actively silenced and their expression is extremely variable between natural accessions. This high expression variability is largely caused by the high variability of repressive chromatin levels at lncRNA loci. High variability was particularly common for intergenic lncRNAs (lincRNAs), where pieces of transposable elements (TEs) present in 50% of these lincRNA loci are associated with increased silencing and variation, and such lncRNAs tend to be targeted by the TE silencing machinery. We created a population-wide lncRNA annotation in Arabidopsis and improve our understanding of plant lncRNA genome biology, raising fundamental questions about what causes transcription and silencing across the genome.


Assuntos
Arabidopsis , RNA Longo não Codificante , Humanos , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Elementos de DNA Transponíveis/genética , Transcriptoma/genética , Genoma de Planta/genética , Mamíferos/genética , Mamíferos/metabolismo
4.
PLoS Genet ; 19(5): e1010728, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141384

RESUMO

Gene-body methylation (gbM) refers to sparse CG methylation of coding regions, which is especially prominent in evolutionarily conserved house-keeping genes. It is found in both plants and animals, but is directly and stably (epigenetically) inherited over multiple generations in the former. Studies in Arabidopsis thaliana have demonstrated that plants originating from different parts of the world exhibit genome-wide differences in gbM, which could reflect direct selection on gbM, but which could also reflect an epigenetic memory of ancestral genetic and/or environmental factors. Here we look for evidence of such factors in F2 plants resulting from a cross between a southern Swedish line with low gbM and a northern Swedish line with high gbM, grown at two different temperatures. Using bisulfite-sequencing data with nucleotide-level resolution on hundreds of individuals, we confirm that CG sites are either methylated (nearly 100% methylation across sampled cells) or unmethylated (approximately 0% methylation across sampled cells), and show that the higher level of gbM in the northern line is due to more sites being methylated. Furthermore, methylation variants almost always show Mendelian segregation, consistent with their being directly and stably inherited through meiosis. To explore how the differences between the parental lines could have arisen, we focused on somatic deviations from the inherited state, distinguishing between gains (relative to the inherited 0% methylation) and losses (relative to the inherited 100% methylation) at each site in the F2 generation. We demonstrate that deviations predominantly affect sites that differ between the parental lines, consistent with these sites being more mutable. Gains and losses behave very differently in terms of the genomic distribution, and are influenced by the local chromatin state. We find clear evidence for different trans-acting genetic polymorphism affecting gains and losses, with those affecting gains showing strong environmental interactions (G×E). Direct effects of the environment were minimal. In conclusion, we show that genetic and environmental factors can change gbM at a cellular level, and hypothesize that these factors can also lead to transgenerational differences between individuals via the inclusion of such changes in the zygote. If true, this could explain genographic pattern of gbM with selection, and would cast doubt on estimates of epimutation rates from inbred lines in constant environments.


Assuntos
Arabidopsis , Arabidopsis/genética , Metilação de DNA/genética , Epigênese Genética , Genes de Plantas , Genômica/métodos
5.
PLoS Genet ; 18(9): e1010345, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36084135

RESUMO

Genome-wide association studies (GWAS) have revealed that the striking natural variation for DNA CHH-methylation (mCHH; H is A, T, or C) of transposons has oligogenic architecture involving major alleles at a handful of known methylation regulators. Here we use a conditional GWAS approach to show that CHG-methylation (mCHG) has a similar genetic architecture-once mCHH is statistically controlled for. We identify five key trans-regulators that appear to modulate mCHG levels, and show that they interact with a previously identified modifier of mCHH in regulating natural transposon mobilization.


Assuntos
Arabidopsis , Arabidopsis/genética , Metilação de DNA/genética , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla
6.
Proc Natl Acad Sci U S A ; 119(30): e2201285119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867817

RESUMO

Although complex interactions between hosts and microbial associates are increasingly well documented, we still know little about how and why hosts shape microbial communities in nature. In addition, host genetic effects on microbial communities vary widely depending on the environment, obscuring conclusions about which microbes are impacted and which plant functions are important. We characterized the leaf microbiota of 200 Arabidopsis thaliana genotypes in eight field experiments and detected consistent host effects on specific, broadly distributed microbial species (operational taxonomic unit [OTUs]). Host genetic effects disproportionately influenced central ecological hubs, with heritability of particular OTUs declining with their distance from the nearest hub within the microbial network. These host effects could reflect either OTUs preferentially associating with specific genotypes or differential microbial success within them. Host genetics associated with microbial hubs explained over 10% of the variation in lifetime seed production among host genotypes across sites and years. We successfully cultured one of these microbial hubs and demonstrated its growth-promoting effects on plants in sterile conditions. Finally, genome-wide association mapping identified many putatively causal genes with small effects on the relative abundance of microbial hubs across sites and years, and these genes were enriched for those involved in the synthesis of specialized metabolites, auxins, and the immune system. Using untargeted metabolomics, we corroborate the consistent association between variation in specialized metabolites and microbial hubs across field sites. Together, our results reveal that host genetic variation impacts the microbial communities in consistent ways across environments and that these effects contribute to fitness variation among host genotypes.


Assuntos
Arabidopsis , Interações entre Hospedeiro e Microrganismos , Microbiota , Folhas de Planta , Arabidopsis/genética , Arabidopsis/microbiologia , Estudo de Associação Genômica Ampla , Interações entre Hospedeiro e Microrganismos/genética , Folhas de Planta/genética , Folhas de Planta/microbiologia
7.
EMBO J ; 39(20): e103667, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32815560

RESUMO

In plants, aerial organs originate continuously from stem cells in the center of the shoot apical meristem. Descendants of stem cells in the subepidermal layer are progenitors of germ cells, giving rise to male and female gametes. In these cells, mutations, including insertions of transposable elements or viruses, must be avoided to preserve genome integrity across generations. To investigate the molecular characteristics of stem cells in Arabidopsis, we isolated their nuclei and analyzed stage-specific gene expression and DNA methylation in plants of different ages. Stem cell expression signatures are largely defined by developmental stage but include a core set of stem cell-specific genes, among which are genes implicated in epigenetic silencing. Transiently increased expression of transposable elements in meristems prior to flower induction correlates with increasing CHG methylation during development and decreased CHH methylation, before stem cells enter the reproductive lineage. These results suggest that epigenetic reprogramming may occur at an early stage in this lineage and could contribute to genome protection in stem cells during germline development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA , Elementos de DNA Transponíveis/genética , Brotos de Planta/metabolismo , Células-Tronco/metabolismo , Células-Tronco Germinativas Adultas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Epigênese Genética , Epigenômica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Ontologia Genética , Inativação Gênica , Estudo de Associação Genômica Ampla , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Análise de Componente Principal , RNA-Seq
8.
Mol Ecol ; 33(19): e17512, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39219267

RESUMO

Long-term genetic studies of wild populations are very scarce, but are essential for connecting ecological and population genetics models, and for understanding the dynamics of biodiversity. We present a study of a wild wheat population sampled over a 36-year period at high spatial resolution. We genotyped 832 individuals from regular sampling along transects during the course of the experiment. Genotypes were clustered into ecological microhabitats over scales of tens of metres, and this clustering was remarkably stable over the 36 generations of the study. Simulations show that it is difficult to determine whether this spatial and temporal stability reflects extremely limited dispersal or fine-scale local adaptation to ecological parameters. Using a common-garden experiment, we showed that the genotypes found in distinct microhabitats differ phenotypically. Our results provide a rare insight into the population genetics of a natural population over a long monitoring period.


Assuntos
Ecossistema , Genética Populacional , Genótipo , Triticum , Triticum/genética , Fenótipo , Repetições de Microssatélites/genética , Modelos Genéticos , Variação Genética
9.
Plant Physiol ; 194(1): 412-421, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37757882

RESUMO

Fertilization in Arabidopsis (Arabidopsis thaliana) is a highly coordinated process that begins with a pollen tube delivering the 2 sperm cells into the embryo sac. Each sperm cell can then fertilize either the egg or the central cell to initiate embryo or endosperm development, respectively. The success of this double fertilization process requires a tight cell cycle synchrony between the male and female gametes to allow karyogamy (nuclei fusion). However, the cell cycle status of the male and female gametes during fertilization remains elusive as DNA quantification and DNA replication assays have given conflicting results. Here, to reconcile these results, we quantified the DNA replication state by DNA sequencing and performed microscopic analyses of fluorescent markers covering all phases of the cell cycle. We show that male and female Arabidopsis gametes are both arrested prior to DNA replication at maturity and initiate their DNA replication only during fertilization.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Sementes/genética , Sementes/metabolismo , Reprodução , Fertilização , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Células Germinativas/metabolismo
10.
Plant Physiol ; 193(2): 980-1000, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37220420

RESUMO

Acclimation and adaptation of metabolism to a changing environment are key processes for plant survival and reproductive success. In the present study, 241 natural accessions of Arabidopsis (Arabidopsis thaliana) were grown under two different temperature regimes, 16 °C and 6 °C, and growth parameters were recorded, together with metabolite profiles, to investigate the natural genome × environment effects on metabolome variation. The plasticity of metabolism, which was captured by metabolic distance measures, varied considerably between accessions. Both relative growth rates and metabolic distances were predictable by the underlying natural genetic variation of accessions. Applying machine learning methods, climatic variables of the original growth habitats were tested for their predictive power of natural metabolic variation among accessions. We found specifically habitat temperature during the first quarter of the year to be the best predictor of the plasticity of primary metabolism, indicating habitat temperature as the causal driver of evolutionary cold adaptation processes. Analyses of epigenome- and genome-wide associations revealed accession-specific differential DNA-methylation levels as potentially linked to the metabolome and identified FUMARASE2 as strongly associated with cold adaptation in Arabidopsis accessions. These findings were supported by calculations of the biochemical Jacobian matrix based on variance and covariance of metabolomics data, which revealed that growth under low temperatures most substantially affects the accession-specific plasticity of fumarate and sugar metabolism. Our findings indicate that the plasticity of metabolic regulation is predictable from the genome and epigenome and driven evolutionarily by Arabidopsis growth habitats.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Temperatura Baixa , Temperatura , Clima , Metaboloma/genética , Proteínas de Arabidopsis/genética
11.
Annu Rev Genet ; 49: 315-38, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26436459

RESUMO

Darwin's theory of evolution by natural selection is the foundation of modern biology. However, it has proven remarkably difficult to demonstrate at the genetic, genomic, and population level exactly how wild species adapt to their natural environments. We discuss how one can use large sets of multiple genome sequences from wild populations to understand adaptation, with an emphasis on the small herbaceous plant Arabidopsis thaliana. We present motivation for such studies; summarize progress in describing whole-genome, species-wide sequence variation; and then discuss what insights have emerged from these resources, either based on sequence information alone or in combination with phenotypic data. We conclude with thoughts on opportunities with other plant species and the impact of expected progress in sequencing technology and genome engineering for studying adaptation in nature.


Assuntos
Adaptação Fisiológica/genética , Genética Populacional/métodos , Genoma de Planta , Genômica/métodos , Arabidopsis/genética , Resistência à Doença/genética , Epigenômica , Flores/genética , Variação Genética , Estudo de Associação Genômica Ampla , Seleção Genética
12.
Cell ; 133(6): 939-43, 2008 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-18555767

RESUMO

Studies of the model plant Arabidopsis thaliana may seem to have little impact on advances in medical research, yet a survey of the scientific literature shows that this is a misconception. Many discoveries with direct relevance to human health and disease have been elaborated using Arabidopsis, and several processes important to human biology are more easily studied in this versatile model plant.


Assuntos
Arabidopsis/metabolismo , Doença de Alzheimer/metabolismo , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano , Humanos , Imunidade , Modelos Biológicos , Neoplasias/metabolismo
13.
Mol Biol Evol ; 38(11): 4822-4831, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34240182

RESUMO

Understanding the genetic architecture of complex traits is a major objective in biology. The standard approach for doing so is genome-wide association studies (GWAS), which aim to identify genetic polymorphisms responsible for variation in traits of interest. In human genetics, consistency across studies is commonly used as an indicator of reliability. However, if traits are involved in adaptation to the local environment, we do not necessarily expect reproducibility. On the contrary, results may depend on where you sample, and sampling across a wide range of environments may decrease the power of GWAS because of increased genetic heterogeneity. In this study, we examine how sampling affects GWAS in the model plant species Arabidopsis thaliana. We show that traits like flowering time are indeed influenced by distinct genetic effects in local populations. Furthermore, using gene expression as a molecular phenotype, we show that some genes are globally affected by shared variants, whereas others are affected by variants specific to subpopulations. Remarkably, the former are essentially all cis-regulated, whereas the latter are predominately affected by trans-acting variants. Our result illustrate that conclusions about genetic architecture can be extremely sensitive to sampling and population structure.


Assuntos
Arabidopsis , Estudo de Associação Genômica Ampla , Arabidopsis/genética , Heterogeneidade Genética , Variação Genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes
14.
Nucleic Acids Res ; 48(D1): D1063-D1068, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31642487

RESUMO

Genome-wide association studies (GWAS) are integral for studying genotype-phenotype relationships and gaining a deeper understanding of the genetic architecture underlying trait variation. A plethora of genetic associations between distinct loci and various traits have been successfully discovered and published for the model plant Arabidopsis thaliana. This success and the free availability of full genomes and phenotypic data for more than 1,000 different natural inbred lines led to the development of several data repositories. AraPheno (https://arapheno.1001genomes.org) serves as a central repository of population-scale phenotypes in A. thaliana, while the AraGWAS Catalog (https://aragwas.1001genomes.org) provides a publicly available, manually curated and standardized collection of marker-trait associations for all available phenotypes from AraPheno. In this major update, we introduce the next generation of both platforms, including new data, features and tools. We included novel results on associations between knockout-mutations and all AraPheno traits. Furthermore, AraPheno has been extended to display RNA-Seq data for hundreds of accessions, providing expression information for over 28 000 genes for these accessions. All data, including the imputed genotype matrix used for GWAS, are easily downloadable via the respective databases.


Assuntos
Arabidopsis/genética , Biologia Computacional , Bases de Dados Genéticas , Genoma de Planta , Estudo de Associação Genômica Ampla , Fenótipo , Biologia Computacional/métodos , Técnicas de Inativação de Genes , Estudo de Associação Genômica Ampla/métodos , Genótipo , Mutação , Locos de Características Quantitativas , Característica Quantitativa Herdável , Análise de Sequência de RNA , Navegador
15.
PLoS Genet ; 15(12): e1008492, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31887137

RESUMO

DNA cytosine methylation is an epigenetic mark associated with silencing of transposable elements (TEs) and heterochromatin formation. In plants, it occurs in three sequence contexts: CG, CHG, and CHH (where H is A, T, or C). The latter does not allow direct inheritance of methylation during DNA replication due to lack of symmetry, and methylation must therefore be re-established every cell generation. Genome-wide association studies (GWAS) have previously shown that CMT2 and NRPE1 are major determinants of genome-wide patterns of TE CHH methylation. Here we instead focus on CHH methylation of individual TEs and TE-families, allowing us to identify the pathways involved in CHH methylation simply from natural variation and confirm the associations by comparing them with mutant phenotypes. Methylation at TEs targeted by the RNA-directed DNA methylation (RdDM) pathway is unaffected by CMT2 variation, but is strongly affected by variation at NRPE1, which is largely responsible for the longitudinal cline in this phenotype. In contrast, CMT2-targeted TEs are affected by both loci, which jointly explain 7.3% of the phenotypic variation (13.2% of total genetic effects). There is no longitudinal pattern for this phenotype, however, because the geographic patterns appear to compensate for each other in a pattern suggestive of stabilizing selection.


Assuntos
Arabidopsis/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Elementos de DNA Transponíveis , RNA Polimerases Dirigidas por DNA/genética , Proteínas de Arabidopsis/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Variação Genética , Estudo de Associação Genômica Ampla , Fenótipo , Análise de Sequência de DNA
16.
Genes Dev ; 28(15): 1635-40, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25035417

RESUMO

Relating molecular variation to phenotypic diversity is a central goal in evolutionary biology. In Arabidopsis thaliana, FLOWERING LOCUS C (FLC) is a major determinant of variation in vernalization--the acceleration of flowering by prolonged cold. Here, through analysis of 1307 A. thaliana accessions, we identify five predominant FLC haplotypes defined by noncoding sequence variation. Genetic and transgenic experiments show that they are functionally distinct, varying in FLC expression level and rate of epigenetic silencing. Allelic heterogeneity at this single locus accounts for a large proportion of natural variation in vernalization that contributes to adaptation of A. thaliana.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Proteínas de Domínio MADS/genética , Adaptação Fisiológica/genética , Epigênese Genética/genética , Inativação Gênica , Haplótipos , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único/genética
17.
Heredity (Edinb) ; 127(3): 245-252, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34226672

RESUMO

Genome-wide association studies (GWAS) have become a standard approach for exploring the genetic basis of phenotypic variation. However, correlation is not causation, and only a tiny fraction of all associations have been experimentally confirmed. One practical problem is that a peak of association does not always pinpoint a causal gene, but may instead be tagging multiple causal variants. In this study, we reanalyze a previously reported peak associated with flowering time traits in Swedish Arabidopsis thaliana population. The peak appeared to pinpoint the AOP2/AOP3 cluster of glucosinolate biosynthesis genes, which is known to be responsible for natural variation in herbivore resistance. Here we propose an alternative hypothesis, by demonstrating that the AOP2/AOP3 flowering association can be wholly accounted for by allelic variation in two flanking genes with clear roles in regulating flowering: NDX1, a regulator of the main flowering time controller FLC, and GA1, which plays a central role in gibberellin synthesis and is required for flowering under some conditions. In other words, we propose that the AOP2/AOP3 flowering-time association may be yet another example of a spurious, "synthetic" association, arising from trying to fit a single-locus model in the presence of two statistically associated causative loci. We conclude that caution is needed when using GWAS for fine-mapping.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Heterogeneidade Genética , Estudo de Associação Genômica Ampla
18.
Nucleic Acids Res ; 46(D1): D1150-D1156, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29059333

RESUMO

The abundance of high-quality genotype and phenotype data for the model organism Arabidopsis thaliana enables scientists to study the genetic architecture of many complex traits at an unprecedented level of detail using genome-wide association studies (GWAS). GWAS have been a great success in A. thaliana and many SNP-trait associations have been published. With the AraGWAS Catalog (https://aragwas.1001genomes.org) we provide a publicly available, manually curated and standardized GWAS catalog for all publicly available phenotypes from the central A. thaliana phenotype repository, AraPheno. All GWAS have been recomputed on the latest imputed genotype release of the 1001 Genomes Consortium using a standardized GWAS pipeline to ensure comparability between results. The catalog includes currently 167 phenotypes and more than 222 000 SNP-trait associations with P < 10-4, of which 3887 are significantly associated using permutation-based thresholds. The AraGWAS Catalog can be accessed via a modern web-interface and provides various features to easily access, download and visualize the results and summary statistics across GWAS.


Assuntos
Arabidopsis/genética , Bases de Dados Genéticas , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Interface Usuário-Computador
19.
Nat Rev Genet ; 14(1): 1-2, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23165185

RESUMO

The authors argue that population structure per se is not a problem in genome-wide association studies - the true sources are the environment and the genetic background, and the latter is greatly underappreciated. They conclude that mixed models effectively address this issue.


Assuntos
Estudo de Associação Genômica Ampla , Animais , Fatores de Confusão Epidemiológicos , Interação Gene-Ambiente , Humanos
20.
Nucleic Acids Res ; 45(D1): D1054-D1059, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27924043

RESUMO

Natural genetic variation makes it possible to discover evolutionary changes that have been maintained in a population because they are advantageous. To understand genotype-phenotype relationships and to investigate trait architecture, the existence of both high-resolution genotypic and phenotypic data is necessary. Arabidopsis thaliana is a prime model for these purposes. This herb naturally occurs across much of the Eurasian continent and North America. Thus, it is exposed to a wide range of environmental factors and has been subject to natural selection under distinct conditions. Full genome sequencing data for more than 1000 different natural inbred lines are available, and this has encouraged the distributed generation of many types of phenotypic data. To leverage these data for meta analyses, AraPheno (https://arapheno.1001genomes.org) provide a central repository of population-scale phenotypes for A. thaliana inbred lines. AraPheno includes various features to easily access, download and visualize the phenotypic data. This will facilitate a comparative analysis of the many different types of phenotypic data, which is the base to further enhance our understanding of the genotype-phenotype map.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Bases de Dados Genéticas , Estudos de Associação Genética/métodos , Genótipo , Fenótipo , Ferramenta de Busca , Sistemas de Gerenciamento de Base de Dados , Software , Navegador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA