Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Phys Chem Chem Phys ; 23(6): 3810-3819, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33533341

RESUMO

Electron paramagnetic resonance (EPR) distance measurements are making increasingly important contributions to studies of biomolecules underpinning health and disease by providing highly accurate and precise geometric constraints. Combining double-histidine (dH) motifs with CuII spin labels shows promise for further increasing the precision of distance measurements, and for investigating subtle conformational changes. However, non-covalent coordination-based spin labelling is vulnerable to low binding affinity. Dissociation constants of dH motifs for CuII-nitrilotriacetic acid were previously investigated via relaxation induced dipolar modulation enhancement (RIDME), and demonstrated the feasibility of exploiting the dH motif for EPR applications at sub-µM protein concentrations. Herein, the feasibility of using modulation depth quantitation in CuII-CuII RIDME to simultaneously estimate a pair of non-identical independent KD values in such a tetra-histidine model protein is addressed. Furthermore, we develop a general speciation model to optimise CuII labelling efficiency, depending upon pairs of identical or disparate KD values and total CuII label concentration. We find the dissociation constant estimates are in excellent agreement with previously determined values, and empirical modulation depths support the proposed model.


Assuntos
Proteínas de Bactérias/química , Complexos de Coordenação/química , Cobre/química , Histidina/química , Marcadores de Spin , Quelantes/química , Espectroscopia de Ressonância de Spin Eletrônica , Iminoácidos/química , Modelos Químicos , Ácido Nitrilotriacético/química , Streptococcus/química
2.
Inorg Chem ; 58(5): 3015-3025, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30776218

RESUMO

The design, synthesis, and application of a nine-coordinate gadolinium(III)-containing spin label, [Gd.sTPATCN]-SL, for use in nanometer-distance measurement experiments by EPR spectroscopy is presented. The spin label links to cysteines via a short thioether tether and has a narrow central transition indicative of small zero-field splitting (ZFS). A protein homodimer, TRIM25cc, was selectively labeled with [Gd.sTPATCN]-SL (70%) and a nitroxide (30%) under mild conditions and measured using the double electron electron resonance (DEER) technique with both commercial Q-band and home-built W-band spectrometers. The label shows great promise for increasing the sensitivity of DEER measurements through both its favorable relaxation parameters and the large DEER modulation depth at both Q- and W-band for the inter-Gd(III) DEER measurement which, at 9%, is the largest recorded under these conditions.

3.
Angew Chem Int Ed Engl ; 58(34): 11681-11685, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31218813

RESUMO

Electron paramagnetic resonance (EPR) distance measurements are making increasingly important contributions to the studies of biomolecules by providing highly accurate geometric constraints. Combining double-histidine motifs with CuII spin labels can further increase the precision of distance measurements. It is also useful for proteins containing essential cysteines that can interfere with thiol-specific labelling. However, the non-covalent CuII coordination approach is vulnerable to low binding-affinity. Herein, dissociation constants (KD ) are investigated directly from the modulation depths of relaxation-induced dipolar modulation enhancement (RIDME) EPR experiments. This reveals low- to sub-µm CuII KD s under EPR distance measurement conditions at cryogenic temperatures. We show the feasibility of exploiting the double-histidine motif for EPR applications even at sub-µm protein concentrations in orthogonally labelled CuII -nitroxide systems using a commercial Q-band EPR instrument.

4.
Nucleic Acids Res ; 44(13): 6157-72, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27036862

RESUMO

Vps75 is a histone chaperone that has been historically characterized as homodimer by X-ray crystallography. In this study, we present a crystal structure containing two related tetrameric forms of Vps75 within the crystal lattice. We show Vps75 associates with histones in multiple oligomers. In the presence of equimolar H3-H4 and Vps75, the major species is a reconfigured Vps75 tetramer bound to a histone H3-H4 tetramer. However, in the presence of excess histones, a Vps75 dimer bound to a histone H3-H4 tetramer predominates. We show the Vps75-H3-H4 interaction is compatible with the histone chaperone Asf1 and deduce a structural model of the Vps75-Asf1-H3-H4 (VAH) co-chaperone complex using the Pulsed Electron-electron Double Resonance (PELDOR) technique and cross-linking MS/MS distance restraints. The model provides a molecular basis for the involvement of both Vps75 and Asf1 in Rtt109 catalysed histone H3 K9 acetylation. In the absence of Asf1 this model can be used to generate a complex consisting of a reconfigured Vps75 tetramer bound to a H3-H4 tetramer. This provides a structural explanation for many of the complexes detected biochemically and illustrates the ability of Vps75 to interact with dimeric or tetrameric H3-H4 using the same interaction surface.


Assuntos
Proteínas de Ciclo Celular/química , Chaperonas de Histonas/química , Histonas/química , Chaperonas Moleculares/química , Proteínas de Saccharomyces cerevisiae/química , Acetilação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografia por Raios X , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/genética , Histonas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos , Ligação Proteica , Multimerização Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Biochemistry ; 55(30): 4166-72, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27387136

RESUMO

The four-way (Holliday) DNA junction of homologous recombination is processed by the symmetrical cleavage of two strands by a nuclease. These junction-resolving enzymes bind to four-way junctions in dimeric form, distorting the structure of the junction in the process. Crystal structures of T7 endonuclease I have been determined as free protein, and the complex with a DNA junction. In neither crystal structure was the N-terminal 16-amino acid peptide visible, yet deletion of this peptide has a marked effect on the resolution process. Here we have investigated the N-terminal peptide by inclusion of spin-label probes at unique sites within this region, studied by electron paramagnetic resonance. Continuous wave experiments show that these labels are mobile in the free protein but become constrained on binding a DNA junction, with the main interaction occurring for residues 7-10 and 12. Distance measurements between equivalent positions within the two peptides of a dimer using PELDOR showed that the intermonomeric distances for residues 2-12 are long and broadly distributed in the free protein but are significantly shortened and become more defined on binding to DNA. These results suggest that the N-terminal peptides become more organized on binding to the DNA junction and nestle into the minor grooves at the branchpoint, consistent with the biochemical data indicating an important role in the resolution process. This study demonstrates the presence of structure within a protein region that cannot be viewed by crystallography.


Assuntos
Bacteriófago T7/enzimologia , DNA Cruciforme/química , DNA Cruciforme/metabolismo , Desoxirribonuclease I/química , Desoxirribonuclease I/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Bacteriófago T7/genética , Desoxirribonuclease I/genética , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Intrinsicamente Desordenadas/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Virais/genética
6.
Nucleic Acids Res ; 42(9): 6038-51, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24688059

RESUMO

NAP-1 fold histone chaperones play an important role in escorting histones to and from sites of nucleosome assembly and disassembly. The two NAP-1 fold histone chaperones in budding yeast, Vps75 and Nap1, have previously been crystalized in a characteristic homodimeric conformation. In this study, a combination of small angle X-ray scattering, multi angle light scattering and pulsed electron-electron double resonance approaches were used to show that both Vps75 and Nap1 adopt ring-shaped tetrameric conformations in solution. This suggests that the formation of homotetramers is a common feature of NAP-1 fold histone chaperones. The tetramerisation of NAP-1 fold histone chaperones may act to shield acidic surfaces in the absence of histone cargo thus providing a 'self-chaperoning' type mechanism.


Assuntos
Chaperonas Moleculares/química , Proteína 1 de Modelagem do Nucleossomo/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Espalhamento a Baixo Ângulo , Soluções , Difração de Raios X
7.
Methods ; 70(2-3): 139-53, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25448300

RESUMO

Crystallographic and NMR approaches have provided a wealth of structural information about protein domains. However, often these domains are found as components of larger multi domain polypeptides or complexes. Orienting domains within such contexts can provide powerful new insight into their function. The combination of site specific spin labelling and Pulsed Electron Double Resonance (PELDOR) provide a means of obtaining structural measurements that can be used to generate models describing how such domains are oriented. Here we describe a pipeline for modelling the location of thio-reactive nitroxyl spin locations to engineered sties on the histone chaperone Vps75. We then use a combination of experimentally determined measurements and symmetry constraints to model the orientation in which homodimers of Vps75 associate to form homotetramers using the XPLOR-NIH platform. This provides a working example of how PELDOR measurements can be used to generate a structural model.


Assuntos
Biologia Computacional/métodos , Chaperonas de Histonas/química , Modelos Moleculares , Software , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Marcadores de Spin
8.
Biochem J ; 463(2): 297-307, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25031084

RESUMO

The Slc26 proteins are a ubiquitous superfamily of anion transporters conserved from bacteria to humans, among which four have been identified as human disease genes. Our functional knowledge of this protein family has increased but limited structural information is available. These proteins contain a transmembrane (TM) domain and a C-terminal cytoplasmic sulfate transporter and anti-sigma factor (STAS) domain. In a fundamental step towards understanding the structure/function relationships within the family we have used small-angle neutron scattering (SANS) on two distantly related bacterial homologues to show that there is a common, dimeric and structural architecture among Slc26A transporters. Pulsed electron-electron double resonance (PELDOR) spectroscopy supports the dimeric SANS-derived model. Using chimaeric/truncated proteins we have determined the domain organization: the STAS domains project away from the TM core and are essential for protein stability. We use the SANS-generated envelopes to assess a homology model of the TM core.


Assuntos
Proteínas de Transporte de Ânions/química , Proteínas de Bactérias/química , Yersinia enterocolitica/química , Proteínas de Transporte de Ânions/genética , Bactérias/química , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Sequência Conservada , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Estabilidade Proteica , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Yersinia enterocolitica/genética
9.
Biophys J ; 102(3): 561-8, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22325279

RESUMO

Fluorescence resonance energy transfer (FRET) is an important source of long-range distance information in macromolecules. However, extracting maximum information requires knowledge of fluorophore, donor and acceptor, positions on the macromolecule. We previously determined the structure of the indocarbocyanine fluorophores Cy3 and Cy5 attached to DNA via three-carbon atom tethers, showing that they stacked onto the end of the helix in a manner similar to an additional basepair. Our recent FRET study has suggested that when they are attached via a longer 13-atom tether, these fluorophores are repositioned relative to the terminal basepair by a rotation of ∼30°, while remaining stacked. In this study, we have used NMR to extend our structural understanding to the commonly used fluorophore sulfoindocarbocyanine-3 (sCy3) attached to the 5'-terminus of the double-helical DNA via a 13-atom flexible tether (L13). We find that L13-sCy3 remains predominantly stacked onto the end of the duplex, but adopts a significantly different conformation, from that of either Cy3 or Cy5 attached by 3-atom tethers, with the long axes of the fluorophore and the terminal basepair approximately parallel. This result is in close agreement with our FRET data, supporting the contention that FRET data can be used to provide orientational information.


Assuntos
Carbocianinas/química , DNA/química , Corantes Fluorescentes/química , Indóis/química , Ácidos Sulfônicos/química , Sequência de Bases , DNA/genética , Transferência Ressonante de Energia de Fluorescência , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação de Ácido Nucleico , Prótons
10.
Nucleic Acids Res ; 38(2): 695-707, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19914933

RESUMO

The (H3-H4)(2) histone tetramer forms the central core of nucleosomes and, as such, plays a prominent role in assembly, disassembly and positioning of nucleosomes. Despite its fundamental role in chromatin, the tetramer has received little structural investigation. Here, through the use of pulsed electron-electron double resonance spectroscopy coupled with site-directed spin labelling, we survey the structure of the tetramer in solution. We find that tetramer is structurally more heterogeneous on its own than when sequestered in the octamer or nucleosome. In particular, while the central region including the H3-H3' interface retains a structure similar to that observed in nucleosomes, other regions such as the H3 alphaN helix display increased structural heterogeneity. Flexibility of the H3 alphaN helix in the free tetramer also illustrates the potential for post-translational modifications to alter the structure of this region and mediate interactions with histone chaperones. The approach described here promises to prove a powerful system for investigating the structure of additional assemblies of histones with other important factors in chromatin assembly/fluidity.


Assuntos
Histonas/química , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Multimerização Proteica , Marcadores de Spin , Xenopus laevis
11.
Biochemistry ; 50(46): 9963-72, 2011 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-22008089

RESUMO

The four-way (Holliday) DNA junction is the central intermediate in homologous recombination. It is ultimately resolved into two nicked-duplex species by the action of a junction-resolving enzyme. These enzymes are highly selective for the structure of branched DNA, yet as a class these proteins impose significant distortion on their target junctions. Bacteriophage T7 endonuclease I selectively binds and cleaves DNA four-way junctions. The protein is an extremely stable dimer, comprising two globular domains joined by a ß-strand bridge with each active site including amino acids from both polypeptides. The crystal structure of endonuclease I has been solved both as free protein and in complex with a DNA junction, showing that the protein, as well as the junction, becomes distorted on binding. We have therefore used site-specific spin-labeling in conjunction with EPR distance measurements to analyze induced fit in the binding of endonuclease I to a DNA four-way junction. The results support the change in protein structure as it binds to the junction. In addition, we have examined the structure of wild type and catalytically inactive mutants alone and in complex with DNA. We demonstrate the presence of hitherto undefined metastable conformational states within endonuclease I, showing how these states can be influenced by DNA-junction binding or mutations within the active sites. In addition, we demonstrate a previously unobserved instability in the N-terminal α1-helix upon active site mutation. These studies reveal that structural changes in both DNA and protein occur in the action of this junction-resolving enzyme.


Assuntos
Bacteriófago T7/enzimologia , DNA/metabolismo , Desoxirribonuclease I/metabolismo , Bacteriófago T7/química , Bacteriófago T7/genética , Desoxirribonuclease I/química , Desoxirribonuclease I/genética , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Multimerização Proteica
12.
Exp Cell Res ; 316(15): 2465-76, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20403349

RESUMO

Migration Stimulating Factor (MSF) is a genetically truncated isoform of fibronectin (Fn). MSF is a potent stimulator of fibroblast migration, whereas full length Fn is devoid of motogenic activity. MSF and Fn contain four IGD motifs, located in the 3rd, 5th, 7th and 9th type I modules; these modules are referred to as (3)FnI, (5)FnI, (7)FnI and (9)FnI, respectively. We have previously reported that mutation of IGD motifs in modules (7)FnI and (9)FnI of MSF is sufficient to completely abolish the motogenic response of target adult skin fibroblasts. We now report that the IGD sequences in (3)FnI and (5)FnI are also capable of exhibiting motogenic activity when present within fragments of MSF. When present within (1-5)FnI, these sequences require the presence of serum or vitronectin for their motogenic activity to be manifest, whereas the IGD sequences in (7)FnI and (9)FnI are bioactive in the absence of serum factors. All MSF and IGD-containing peptides stimulated the phosphorylation of the integrin binding protein focal adhesion kinase (FAK) but did not necessarily affect migration. These results suggest that steric hindrance determines the motogenic activity of MSF and Fn, and that both molecules contain cryptic bioactive fragments.


Assuntos
Movimento Celular/fisiologia , Citocinas/química , Citocinas/fisiologia , Adulto , Motivos de Aminoácidos/fisiologia , Sequência de Aminoácidos , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/farmacologia , Relação Dose-Resposta a Droga , Drosophila melanogaster , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Fibronectinas/química , Fibronectinas/fisiologia , Humanos , Masculino , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/fisiologia , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Ratos , Homologia de Sequência de Aminoácidos
13.
Proc Natl Acad Sci U S A ; 105(32): 11176-81, 2008 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-18676615

RESUMO

We have found that the efficiency of fluorescence resonance energy transfer between Cy3 and Cy5 terminally attached to the 5' ends of a DNA duplex is significantly affected by the relative orientation of the two fluorophores. The cyanine fluorophores are predominantly stacked on the ends of the helix in the manner of an additional base pair, and thus their relative orientation depends on the length of the helix. Observed fluorescence resonance energy transfer (FRET) efficiency depends on the length of the helix, as well as its helical periodicity. By changing the helical geometry from B form double-stranded DNA to A form hybrid RNA/DNA, a marked phase shift occurs in the modulation of FRET efficiency with helix length. Both curves are well explained by the standard geometry of B and A form helices. The observed modulation for both polymers is less than that calculated for a fully rigid attachment of the fluorophores. However, a model involving lateral mobility of the fluorophores on the ends of the helix explains the observed experimental data. This has been further modified to take account of a minor fraction of unstacked fluorophore observed by fluorescent lifetime measurements. Our data unequivocally establish that Förster transfer obeys the orientation dependence as expected for a dipole-dipole interaction.


Assuntos
Carbocianinas/química , DNA/química , Transferência Ressonante de Energia de Fluorescência , Modelos Químicos , Ácidos Nucleicos Heteroduplexes/química , Conformação de Ácido Nucleico
14.
Structure ; 16(9): 1357-67, 2008 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-18786398

RESUMO

We have used small-angle X-ray solution scattering to obtain ab initio shape reconstructions of the complete VS ribozyme. The ribozyme occupies an electron density envelope with an irregular shape, into which helical sections have been fitted. The ribozyme is built around a core comprising a near-coaxial stack of three helices, organized by two three-way helical junctions. An additional three-way junction formed by an auxiliary helix directs the substrate stem-loop, juxtaposing the cleavage site with an internal loop to create the active complex. This is consistent with the current view of the probable mechanism of trans-esterification in which adenine and guanine nucleobases contributed by the interacting loops combine in general acid-base catalysis.


Assuntos
Soluções Tampão , Endorribonucleases/química , RNA Catalítico/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Sequência de Bases , Domínio Catalítico , Magnésio/metabolismo , Magnésio/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico
15.
J Am Chem Soc ; 131(4): 1348-9, 2009 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-19138067

RESUMO

The nucleosome core particle is the fundamental unit of chromatin structure and at its heart is the histone core octamer composed of histones H4, H3, H2A and H2B. To understand the structure dynamics and function of chromatin it is important to be able to probe the structures of its component parts in a variety of ways. Site directed spin-labeling technology has enabled the insertion of nitroxide spin labels at positions on the surface of the H3 histones and these have been assembled into histone octamers. Pulsed EPR, and in particular the PELDOR or DEER experiments have been performed and provided extremely well defined dipolar oscillations, over long time periods. From the PELDOR data we have been able to derive distance distributions of between 60 and 70 A. The distances measured, are among the longest well-defined PELDOR measurements on a biological system to date, spanning the width of the histone core particle and approaching what has been often defined as the limit of distance measurement by this technique. Relatively minor differences to the crystal structures have been observed.


Assuntos
Histonas/química , Histonas/genética , Histonas/metabolismo , Modelos Moleculares , Mutação/genética , Estrutura Quaternária de Proteína
16.
J Mol Biol ; 431(15): 2900-2909, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31125568

RESUMO

MuRF1 (TRIM63) is a RING-type E3 ubiquitin ligase with a predicted tripartite TRIM fold. TRIM proteins rely upon the correct placement of an N-terminal RING domain, with respect to C-terminal, specific substrate-binding domains. The TRIM domain organization is orchestrated by a central helical domain that forms an antiparallel coiled-coil motif and mediates the dimerization of the fold. MuRF1 has a reduced TRIM composition characterized by a lack of specific substrate binding domains, but contains in its helical domain a conserved sequence motif termed COS-box that has been speculated to fold independently into an α-hairpin. These characteristics had led to question whether MuRF1 adopts a canonical TRIM fold. Using a combination of electron paramagnetic resonance, on spin-labeled protein, and disulfide crosslinking, we show that TRIM63 follows the structural conservation of the TRIM dimerization domain, observed in other proteins. We also show that the COS-box motif folds back onto the dimerization coiled-coil motif, predictably forming a four-helical bundle at the center of the protein and emulating the architecture of canonical TRIMs.


Assuntos
Proteínas Musculares/química , Proteínas com Motivo Tripartido/química , Ubiquitina-Proteína Ligases/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Modelos Moleculares , Conformação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica
17.
Biochemistry ; 47(30): 7857-62, 2008 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-18597488

RESUMO

Fluorescence resonance energy transfer, FRET, can be used to obtain long-range distance information for macromolecules and is particularly powerful when used in single-molecule studies. The determination of accurate distances requires knowledge of the fluorophore position with respect to the macromolecule. In this study we have used NMR to determine the structure of the commonly used fluorophore indocarbocyanine-5 (Cy5) covalently attached to the 5'-terminus of double-helical DNA. We find that Cy5 is predominantly stacked onto the end of the duplex, in a manner similar to an additional base pair. This is very similar to the behavior of Cy3 terminally attached to DNA and suggests that the efficiency of energy transfer between Cy3 and Cy5, that are attached to nucleic acids in this way, will exhibit significant dependence on fluorophore orientation.


Assuntos
Carbocianinas/química , DNA/química , Transferência Ressonante de Energia de Fluorescência/métodos , Sequência de Bases , Carbocianinas/metabolismo , DNA/metabolismo , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Estrutura Molecular , Conformação de Ácido Nucleico
18.
Elife ; 72018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30079888

RESUMO

ATP-dependent chromatin remodelling proteins represent a diverse family of proteins that share ATPase domains that are adapted to regulate protein-DNA interactions. Here, we present structures of the Saccharomyces cerevisiae Chd1 protein engaged with nucleosomes in the presence of the transition state mimic ADP-beryllium fluoride. The path of DNA strands through the ATPase domains indicates the presence of contacts conserved with single strand translocases and additional contacts with both strands that are unique to Snf2 related proteins. The structure provides connectivity between rearrangement of ATPase lobes to a closed, nucleotide bound state and the sensing of linker DNA. Two turns of linker DNA are prised off the surface of the histone octamer as a result of Chd1 binding, and both the histone H3 tail and ubiquitin conjugated to lysine 120 are re-orientated towards the unravelled DNA. This indicates how changes to nucleosome structure can alter the way in which histone epitopes are presented.


Assuntos
Adenosina Trifosfatases/genética , Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Cromatina/genética , Histonas/genética , Nucleossomos/genética , Saccharomyces cerevisiae/genética , Ubiquitina/genética
19.
J Clin Invest ; 113(2): 274-84, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14722619

RESUMO

CBS domains are defined as sequence motifs that occur in several different proteins in all kingdoms of life. Although thought to be regulatory, their exact functions have been unknown. However, their importance was underlined by findings that mutations in conserved residues within them cause a variety of human hereditary diseases, including (with the gene mutated in parentheses): Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase); retinitis pigmentosa (IMP dehydrogenase-1); congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members); and homocystinuria (cystathionine beta-synthase). AMP-activated protein kinase is a sensor of cellular energy status that is activated by AMP and inhibited by ATP, but the location of the regulatory nucleotide-binding sites (which are prime targets for drugs to treat obesity and diabetes) was not characterized. We now show that tandem pairs of CBS domains from AMP-activated protein kinase, IMP dehydrogenase-2, the chloride channel CLC2, and cystathionine beta-synthase bind AMP, ATP, or S-adenosyl methionine,while mutations that cause hereditary diseases impair this binding. This shows that tandem pairs of CBS domains act, in most cases, as sensors of cellular energy status and, as such, represent a newly identified class of binding domain for adenosine derivatives.


Assuntos
Adenosina/química , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítio Alostérico , Motivos de Aminoácidos , Animais , Sítios de Ligação , Clonagem Molecular , DNA/metabolismo , DNA Complementar/metabolismo , Dimerização , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Glutationa Transferase/metabolismo , Humanos , Cinética , Ligantes , Fígado/metabolismo , Modelos Moleculares , Mutação , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Ligação Proteica , Isoformas de Proteínas , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Retinose Pigmentar/patologia
20.
Cell Rep ; 18(7): 1791-1803, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28199849

RESUMO

How metazoan genomes are structured at the nanoscale in living cells and tissues remains unknown. Here, we adapted a quantitative FRET (Förster resonance energy transfer)-based fluorescence lifetime imaging microscopy (FLIM) approach to assay nanoscale chromatin compaction in living organisms. Caenorhabditis elegans was chosen as a model system. By measuring FRET between histone-tagged fluorescent proteins, we visualized distinct chromosomal regions and quantified the different levels of nanoscale compaction in meiotic cells. Using RNAi and repetitive extrachromosomal array approaches, we defined the heterochromatin state and showed that its architecture presents a nanoscale-compacted organization controlled by Heterochromatin Protein-1 (HP1) and SETDB1 H3-lysine-9 methyltransferase homologs in vivo. Next, we functionally explored condensin complexes. We found that condensin I and condensin II are essential for heterochromatin compaction and that condensin I additionally controls lowly compacted regions. Our data show that, in living animals, nanoscale chromatin compaction is controlled not only by histone modifiers and readers but also by condensin complexes.


Assuntos
Adenosina Trifosfatases/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Complexos Multiproteicos/genética , Animais , Caenorhabditis elegans/genética , Células Cultivadas , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Cromossomos/genética , Transferência Ressonante de Energia de Fluorescência/métodos , Heterocromatina/metabolismo , Histonas/genética , Microscopia de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA