Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Blood ; 130(5): 666-676, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28576875

RESUMO

Deficiency of factor X (F10) in humans is a rare bleeding disorder with a heterogeneous phenotype and limited therapeutic options. Targeted disruption of F10 and other common pathway factors in mice results in embryonic/neonatal lethality with rapid resorption of homozygous mutants, hampering additional studies. Several of these mutants also display yolk sac vascular defects, suggesting a role for thrombin signaling in vessel development. The zebrafish is a vertebrate model that demonstrates conservation of the mammalian hemostatic and vascular systems. We have leveraged these advantages for in-depth study of the role of the coagulation cascade in the developmental regulation of hemostasis and vasculogenesis. In this article, we show that ablation of zebrafish f10 by using genome editing with transcription activator-like effector nucleases results in a major embryonic hemostatic defect. However, widespread hemorrhage and subsequent lethality does not occur until later stages, with absence of any detectable defect in vascular development. We also use f10-/- zebrafish to confirm 5 novel human F10 variants as causative mutations in affected patients, providing a rapid and reliable in vivo model for testing the severity of F10 variants. These findings as well as the prolonged survival of f10-/- mutants will enable us to expand our understanding of the molecular mechanisms of hemostasis, including a platform for screening variants of uncertain significance in patients with F10 deficiency and other coagulation disorders. Further study as to how fish tolerate what is an early lethal mutation in mammals could facilitate improvement of diagnostics and therapeutics for affected patients with bleeding disorders.


Assuntos
Coagulação Sanguínea/genética , Fator X , Edição de Genes , Mutação , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Fator X/genética , Fator X/metabolismo , Deficiência do Fator X/embriologia , Deficiência do Fator X/genética , Humanos , Camundongos , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
PLoS One ; 8(9): e74682, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098662

RESUMO

Cessation of bleeding after trauma is a necessary evolutionary vertebrate adaption for survival. One of the major pathways regulating response to hemorrhage is the coagulation cascade, which ends with the cleavage of fibrinogen to form a stable clot. Patients with low or absent fibrinogen are at risk for bleeding. While much detailed information is known about fibrinogen regulation and function through studies of humans and mammalian models, bleeding risk in patients cannot always be accurately predicted purely based on fibrinogen levels, suggesting an influence of modifying factors and a need for additional genetic models. The zebrafish has orthologs to the three components of fibrinogen (fga, fgb, and fgg), but it hasn't yet been shown that zebrafish fibrinogen functions to prevent bleeding in vivo. Here we show that zebrafish fibrinogen is incorporated into an induced thrombus, and deficiency results in hemorrhage. An Fgb-eGFP fusion protein is incorporated into a developing thrombus induced by laser injury, but causes bleeding in adult transgenic fish. Antisense morpholino knockdown results in intracranial and intramuscular hemorrhage at 3 days post fertilization. The observed phenotypes are consistent with symptoms exhibited by patients with hypo- and afibrinogenemia. These data demonstrate that zebrafish possess highly conserved orthologs of the fibrinogen chains, which function similarly to mammals through the formation of a fibrin clot.


Assuntos
Afibrinogenemia/fisiopatologia , Coagulação Sanguínea/genética , Modelos Animais de Doenças , Fibrinogênio/metabolismo , Fenótipo , Peixe-Zebra , Animais , Coagulação Sanguínea/fisiologia , Primers do DNA , Fibrinogênio/genética , Técnicas de Silenciamento de Genes , Hemorragia/patologia , Humanos , Hibridização In Situ , Morfolinos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA