Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 13: 606, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23140540

RESUMO

BACKGROUND: Several methods have recently been developed to identify regions of the genome that have been exposed to strong selection. However, recent theoretical and empirical work suggests that polygenic models are required to identify the genomic regions that are more moderately responding to ongoing selection on complex traits. We examine the effects of multi-trait selection on the genome of a population of US registered Angus beef cattle born over a 50-year period representing approximately 10 generations of selection. We present results from the application of a quantitative genetic model, called Birth Date Selection Mapping, to identify signatures of recent ongoing selection. RESULTS: We show that US Angus cattle have been systematically selected to alter their mean additive genetic merit for most of the 16 production traits routinely recorded by breeders. Using Birth Date Selection Mapping, we estimate the time-dependency of allele frequency for 44,817 SNP loci using genomic best linear unbiased prediction, generalized least squares, and BayesCπ analyses. Finally, we reconstruct the primary phenotypes that have historically been exposed to selection from a genome-wide analysis of the 16 production traits and gene ontology enrichment analysis. CONCLUSIONS: We demonstrate that Birth Date Selection Mapping utilizing mixed models corrects for time-dependent pedigree sampling effects that lead to spurious SNP associations and reveals genomic signatures of ongoing selection on complex traits. Because multiple traits have historically been selected in concert and most quantitative trait loci have small effects, selection has incrementally altered allele frequencies throughout the genome. Two quantitative trait loci of large effect were not the most strongly selected of the loci due to their antagonistic pleiotropic effects on strongly selected phenotypes. Birth Date Selection Mapping may readily be extended to temporally-stratified human or model organism populations.


Assuntos
Genoma , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Seleção Genética , Alelos , Animais , Teorema de Bayes , Cruzamento , Bovinos , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Análise dos Mínimos Quadrados , Masculino , Linhagem , Fenótipo , Fatores de Tempo
2.
Genet Sel Evol ; 43: 40, 2011 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-22122853

RESUMO

BACKGROUND: Genomic selection is a recently developed technology that is beginning to revolutionize animal breeding. The objective of this study was to estimate marker effects to derive prediction equations for direct genomic values for 16 routinely recorded traits of American Angus beef cattle and quantify corresponding accuracies of prediction. METHODS: Deregressed estimated breeding values were used as observations in a weighted analysis to derive direct genomic values for 3570 sires genotyped using the Illumina BovineSNP50 BeadChip. These bulls were clustered into five groups using K-means clustering on pedigree estimates of additive genetic relationships between animals, with the aim of increasing within-group and decreasing between-group relationships. All five combinations of four groups were used for model training, with cross-validation performed in the group not used in training. Bivariate animal models were used for each trait to estimate the genetic correlation between deregressed estimated breeding values and direct genomic values. RESULTS: Accuracies of direct genomic values ranged from 0.22 to 0.69 for the studied traits, with an average of 0.44. Predictions were more accurate when animals within the validation group were more closely related to animals in the training set. When training and validation sets were formed by random allocation, the accuracies of direct genomic values ranged from 0.38 to 0.85, with an average of 0.65, reflecting the greater relationship between animals in training and validation. The accuracies of direct genomic values obtained from training on older animals and validating in younger animals were intermediate to the accuracies obtained from K-means clustering and random clustering for most traits. The genetic correlation between deregressed estimated breeding values and direct genomic values ranged from 0.15 to 0.80 for the traits studied. CONCLUSIONS: These results suggest that genomic estimates of genetic merit can be produced in beef cattle at a young age but the recurrent inclusion of genotyped sires in retraining analyses will be necessary to routinely produce for the industry the direct genomic values with the highest accuracy.


Assuntos
Cruzamento , Bovinos/genética , Genômica/métodos , Genômica/normas , Animais , Bovinos/crescimento & desenvolvimento , Análise por Conglomerados , Feminino , Masculino , Modelos Genéticos , Linhagem , Característica Quantitativa Herdável
3.
BMC Genet ; 11: 24, 2010 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-20403185

RESUMO

BACKGROUND: Molecular estimates of breeding value are expected to increase selection response due to improvements in the accuracy of selection and a reduction in generation interval, particularly for traits that are difficult or expensive to record or are measured late in life. Several statistical methods for incorporating molecular data into breeding value estimation have been proposed, however, most studies have utilized simulated data in which the generated linkage disequilibrium may not represent the targeted livestock population. A genomic relationship matrix was developed for 698 Angus steers and 1,707 Angus sires using 41,028 single nucleotide polymorphisms and breeding values were estimated using feed efficiency phenotypes (average daily feed intake, residual feed intake, and average daily gain) recorded on the steers. The number of SNPs needed to accurately estimate a genomic relationship matrix was evaluated in this population. RESULTS: Results were compared to estimates produced from pedigree-based mixed model analysis of 862 Angus steers with 34,864 identified paternal relatives but no female ancestors. Estimates of additive genetic variance and breeding value accuracies were similar for AFI and RFI using the numerator and genomic relationship matrices despite fewer animals in the genomic analysis. Bootstrap analyses indicated that 2,500-10,000 markers are required for robust estimation of genomic relationship matrices in cattle. CONCLUSIONS: This research shows that breeding values and their accuracies may be estimated for commercially important sires for traits recorded in experimental populations without the need for pedigree data to establish identity by descent between members of the commercial and experimental populations when at least 2,500 SNPs are available for the generation of a genomic relationship matrix.


Assuntos
Cruzamento , Bovinos/genética , Comportamento Alimentar , Polimorfismo de Nucleotídeo Único , Ração Animal , Animais , Modelos Lineares , Masculino , Linhagem , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA