RESUMO
We used whole-exome and targeted sequencing to characterize somatic mutations in 103 colorectal cancers (CRC) from African Americans, identifying 20 new genes as significantly mutated in CRC. Resequencing 129 Caucasian derived CRCs confirmed a 15-gene set as a preferential target for mutations in African American CRCs. Two predominant genes, ephrin type A receptor 6 (EPHA6) and folliculin (FLCN), with mutations exclusive to African American CRCs, are by genetic and biological criteria highly likely African American CRC driver genes. These previously unsuspected differences in the mutational landscapes of CRCs arising among individuals of different ethnicities have potential to impact on broader disparities in cancer behaviors.
Assuntos
Negro ou Afro-Americano/genética , Neoplasias do Colo/etnologia , Neoplasias do Colo/genética , Mutação , Proteínas Proto-Oncogênicas/genética , Receptor EphA6/genética , Proteínas Supressoras de Tumor/genética , Exoma , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , População Branca/genéticaRESUMO
Cancers of the colon and rectum are the second leading cause of cancer death among adult Americans. When detected at early stages, colon cancer is highly curable. Colonoscopy, an effective but invasive screening test, has been limited in its public acceptance. The goal of this study was to identify novel serum markers of colon cancers and precancerous colon adenomas as potential candidates for noninvasive detection of early colon neoplasms. Employing expression microarrays, we identified colon cancer secreted protein-2 (CCSP-2) as a novel transcript whose expression is generally absent in normal colon and other normal body tissues, but that is induced an average of 78-fold in Stage II, III, and IV colon cancers, as well as in colon adenomas and colon cancer cell lines. These findings were validated by real-time PCR analysis in an independent panel of colon cancer cases. Moreover, CCSP-2 was shown to encode a secreted protein that circulates stably and is detectable in the blood of mice bearing human cancer xenografts transfected with epitope-tagged CCSP-2. As a novel secreted protein that is markedly induced in colon adenomas and cancers, CCSP-2 is a novel candidate for development as a diagnostic serum marker of early stage colon cancer.
Assuntos
Biomarcadores Tumorais/sangue , Neoplasias do Colo/sangue , Neoplasias do Colo/patologia , Fatores de Transcrição/sangue , Sequência de Aminoácidos , Animais , Sequência de Bases , Biomarcadores Tumorais/química , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteínas de Ligação ao Cálcio , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Dados de Sequência Molecular , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transplante HeterólogoRESUMO
Oncogene activation by gene amplification is a major pathogenetic mechanism in human cancer. Using comparative genomic hybridization, we determined that metastatic human colon cancers commonly acquire numerous extra copies of chromosome arms 7p, 8q, 13q, and 20q. We then examined the consequence of these amplifications on gene expression using DNA microarrays. Of 55,000 transcripts profiled, 2,146 were determined to map to one of the four common colon cancer amplicons and to also be expressed in normal or malignant colon tissues. Of these, only 81 transcripts (3.8%) demonstrated a 2-fold increase over normal expression among cancers bearing the corresponding chromosomal amplification. Chromosomal amplifications are common in colon cancer metastasis, but increased expression of genes within these amplicons is rare.
Assuntos
Neoplasias do Colo/genética , Amplificação de Genes , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Regulação para CimaRESUMO
To identify potential effectors of transforming growth factor (TGF)-beta-mediated suppression of colon cancer, we used GeneChip expression microarrays to identify TGF-beta-induced genes in VACO 330, a nontransformed TGF-beta-sensitive cell line derived from a human adenomatous colon polyp. PMEPA1 was identified as a gene highly up-regulated by TGF-beta treatment of VACO 330. Northern blot analysis confirmed TGF-beta induction of PMEPA1 in VACO 330, as well as a panel of three other TGF-beta-sensitive colon cell lines. PMEPA1 induction could be detected as early as 2 h after TGF-beta treatment and was not inhibited by pretreatment of cells with cycloheximide, suggesting that PMEPA1 is a direct target of TGF-beta signaling. Wild-type PMEPA1 and an alternative splice variant lacking the putative transmembrane domain were encoded by the PMEPA1 locus and were shown by epitope tagging to encode proteins with differing subcellular localization. Both variants were found to be expressed in normal colonic epithelium, and both were shown to be induced by TGF-beta. Consistent with TGF-beta playing a role in terminal differentiation of colonocytes, in situ hybridization of normal colonic epithelium localized PMEPA1 expression to nonproliferating, terminally differentiated epithelium located at the top of colonic crypts. Intriguingly, in situ hybridization and Northern blot analysis showed that the expression of PMEPA1 was well maintained both in colon cancer primary tumors and in colon cancer liver metastases. PMEPA1 is thus a novel TGF-beta-induced marker of a differentiated crypt cell population. Moreover, as PMEPA1 expression is maintained, presumptively in a TGF-beta-independent manner after malignant transformation and metastasis, it demonstrates that even late colon cancers retain a strong capacity to execute many steps of the normal colonic differentiation program.
Assuntos
Neoplasias do Colo/metabolismo , Proteínas de Membrana/biossíntese , Fator de Crescimento Transformador beta/fisiologia , Processamento Alternativo , Sequência de Aminoácidos , Sequência de Bases , Diferenciação Celular/genética , Divisão Celular/fisiologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Colo/citologia , Colo/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Isoformas de Proteínas , Transdução de Sinais/fisiologia , Frações Subcelulares/metabolismo , Transfecção , Fator de Crescimento Transformador beta/farmacologia , Regulação para CimaRESUMO
Reliable detection of somatic copy-number alterations (sCNAs) in tumors using whole-exome sequencing (WES) remains challenging owing to technical (inherent noise) and sample-associated variability in WES data. We present a novel computational framework, ENVE, which models inherent noise in any WES dataset, enabling robust detection of sCNAs across WES platforms. ENVE achieved high concordance with orthogonal sCNA assessments across two colorectal cancer (CRC) WES datasets, and consistently outperformed a best-in-class algorithm, Control-FREEC. We subsequently used ENVE to characterize global sCNA landscapes in African American CRCs, identifying genomic aberrations potentially associated with CRC pathogenesis in this population. ENVE is downloadable at https://github.com/ENVE-Tools/ENVE.
Assuntos
Negro ou Afro-Americano/genética , Neoplasias Colorretais/genética , Variações do Número de Cópias de DNA , Software , Exoma , Genômica , Humanos , Mutação , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Genes induced in colon cancer provide novel candidate biomarkers of tumor phenotype and aggressiveness. We originally identified KIAA1199 (now officially called CEMIP) as a transcript highly induced in colon cancer: initially designating the transcript as Colon Cancer Secreted Protein 1. We molecularly characterized CEMIP expression both at the mRNA and protein level and found it is a secreted protein induced an average of 54-fold in colon cancer. Knockout of CEMIPreduced the ability of human colon cancer cells to form xenograft tumors in athymic mice. Tumors that did grow had increased deposition of hyaluronan, linking CEMIP participation in hyaluronan degradation to the modulation of tumor phenotype. We find CEMIP mRNA overexpression correlates with poorer patient survival. In stage III only (n = 31) or in combined stage II plus stage III colon cancer cases (n = 73), 5-year overall survival was significantly better (p = 0.004 and p = 0.0003, respectively) among patients with low CEMIP expressing tumors than those with high CEMIP expressing tumors. These results demonstrate that CEMIP directly facilitates colon tumor growth, and high CEMIP expression correlates with poor outcome in stage III and in stages II+III combined cohorts. We present CEMIP as a candidate prognostic marker for colon cancer and a potential therapeutic target.