Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Genet ; 38(3): 350-5, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16462745

RESUMO

Genomic imprinting results in allele-specific silencing according to parental origin. Silencing is brought about by imprinting control regions (ICRs) that are differentially marked in gametogenesis. The group of imprinted transcripts in the mouse Gnas cluster (Nesp, Nespas, Gnasxl, Exon 1A and Gnas) provides a model for analyzing the mechanisms of imprint regulation. We previously identified an ICR that specifically regulates the tissue-specific imprinted expression of the Gnas gene. Here we identify a second ICR at the Gnas cluster. We show that a paternally derived targeted deletion of the germline differentially methylated region (DMR) associated with the antisense Nespas transcript unexpectedly affects both the expression of all transcripts in the cluster and methylation of two DMRs. Our results establish that the Nespas DMR is the principal ICR at the Gnas cluster and functions bidirectionally as a switch for modulating expression of the antagonistically acting genes Gnasxl and Gnas. Uniquely, the Nespas DMR acts on the downstream ICR at exon 1A to regulate tissue-specific imprinting of the Gnas gene.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Impressão Genômica , RNA Antissenso/genética , RNA não Traduzido/genética , Transcrição Gênica , Animais , Cromograninas , Metilação de DNA , Éxons , Feminino , Masculino , Camundongos , Dados de Sequência Molecular , Família Multigênica , Deleção de Sequência
2.
Nat Genet ; 36(8): 894-9, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15273687

RESUMO

Genomic imprinting brings about allele-specific silencing according to parental origin. Silencing is controlled by cis-acting regulatory regions that are differentially marked during gametogenesis and can act over hundreds of kilobases to silence many genes. Two candidate imprinting control regions (ICRs) have been identified at the compact imprinted Gnas cluster on distal mouse chromosome 2, one at exon 1A upstream of Gnas itself and one covering the promoters for Gnasxl and the antisense Nespas (ref. 8). This imprinted cluster is complex, containing biallelic, maternally and paternally expressed transcripts that share exons. Gnas itself is mainly biallelically expressed but is weakly paternally repressed in specific tissues. Here we show that a paternally derived targeted deletion of the germline differentially methylated region at exon 1A abolishes tissue-specific imprinting of Gnas. This rescues the abnormal phenotype of mice with a maternally derived Gnas mutation. Imprinting of alternative transcripts, Nesp, Gnasxl and Nespas (ref. 13), in the cluster is unaffected. The results establish that the differentially methylated region at exon 1A contains an imprinting control element that specifically regulates Gnas and comprises a characterized ICR for a gene that is only weakly imprinted in a minority of tissues. There must be a second ICR regulating the alternative transcripts.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Impressão Genômica , Sequências Reguladoras de Ácido Nucleico , Animais , Cromograninas , Metilação de DNA , Marcação de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Especificidade de Órgãos , Regiões Promotoras Genéticas
3.
Blood ; 115(15): 3042-50, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20139099

RESUMO

The transcription factor Runx1 is a pivotal regulator of definitive hematopoiesis in mouse ontogeny. Vertebrate Runx1 is transcribed from 2 promoters, the distal P1 and proximal P2, which provide a paradigm of the complex transcriptional and translational control of Runx1 function. However, very little is known about the biologic relevance of alternative Runx1 promoter usage in definitive hematopoietic cell emergence. Here we report that both promoters are active at the very onset of definitive hematopoiesis, with a skewing toward the P2. Moreover, functional and morphologic analysis of a novel P1-null and an attenuated P2 mouse model revealed that although both promoters play important nonredundant roles in the emergence of definitive hematopoietic cells, the proximal P2 was most critically required for this. The nature of the observed phenotypes is indicative of a differential contribution of the P1 and P2 promoters to the control of overall Runx1 levels, where and when this is most critically required. In addition, the dynamic expression of P1-Runx1 and P2-Runx1 points at a requirement for Runx1 early in development, when the P2 is still the prevalent promoter in the emerging hemogenic endothelium and/or first committed hematopoietic cells.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Hematopoese/genética , Regiões Promotoras Genéticas/genética , Envelhecimento/genética , Alelos , Animais , Aorta/metabolismo , Aorta/patologia , Células da Medula Óssea/metabolismo , Caderinas/metabolismo , Agregação Celular , Contagem de Células , Ensaio de Unidades Formadoras de Colônias , Subunidade alfa 2 de Fator de Ligação ao Core/deficiência , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Perda do Embrião/genética , Perda do Embrião/patologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Loci Gênicos/genética , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Modelos Genéticos , Mutação/genética
4.
Exp Hematol ; 33(9): 1029-40, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16140151

RESUMO

The developmental origin of hematopoietic stem cells has been the subject of much research. Now that the developmental link between the hematopoietic system and the vasculature has been well established, questions remain regarding the precise cellular origin of definitive hematopoietic cells and at what point they branch off from the endothelial lineage. Do they emerge directly from a hemangioblast-type cell, similar to what is proposed for primitive yolk sac hematopoiesis, or are they generated via an endothelial intermediate, the hemogenic endothelium? In this review, we will give an overview of the data obtained from the mouse and avian models on the cellular origins of the hematopoietic system.


Assuntos
Células Endoteliais/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Pluripotentes/fisiologia , Animais , Aves , Linhagem da Célula , Desenvolvimento Embrionário , Endotélio Vascular/citologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição/fisiologia , Saco Vitelino/irrigação sanguínea , Saco Vitelino/citologia , Saco Vitelino/embriologia
5.
Noncoding RNA ; 1(3): 246-265, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29861426

RESUMO

Macro long non-coding RNAs (lncRNAs) play major roles in gene silencing in inprinted gene clusters. Within the imprinted Gnas cluster, the paternally expressed Nespas lncRNA downregulates its sense counterpart Nesp. To explore the mechanism of action of Nespas, we generated two new knock-in alleles to truncate Nespas upstream and downstream of the Nesp promoter. We show that Nespas is essential for methylation of the Nesp differentially methylated region (DMR), but higher levels of Nespas are required for methylation than are needed for downregulation of Nesp. Although Nespas is transcribed for over 27 kb, only Nespas transcript/transcription across a 2.6 kb region that includes the Nesp promoter is necessary for methylation of the Nesp DMR. In both mutants, the levels of Nespas were extraordinarily high, due at least in part to increased stability, an effect not seen with other imprinted lncRNAs. However, even when levels were greatly raised, Nespas remained exclusively cis-acting. We propose Nespas regulates Nesp methylation and expression to ensure appropriate levels of expression of the protein coding transcripts Gnasxl and Gnas on the paternal chromosome. Thus, Nespas mediates paternal gene expression over the entire Gnas cluster via a single gene, Nesp.

6.
Blood ; 111(6): 3005-14, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18184866

RESUMO

Transcription factors such as Scl/Tal1, Lmo2, and Runx1 are essential for the development of hematopoietic stem cells (HSCs). However, the precise mechanisms by which these factors interact to form transcriptional networks, as well as the identity of the genes downstream of these regulatory cascades, remain largely unknown. To this end, we generated an Scl(-/-) yolk sac cell line to identify candidate Scl target genes by global expression profiling after reintroduction of a TAT-Scl fusion protein. Bioinformatics analysis resulted in the identification of 9 candidate Scl target transcription factor genes, including Runx1 and Runx3. Chromatin immunoprecipitation confirmed that both Runx genes are direct targets of Scl in the fetal liver and that Runx1 is also occupied by Scl in the yolk sac. Furthermore, binding of an Scl-Lmo2-Gata2 complex was demonstrated to occur on the regions flanking the conserved E-boxes of the Runx1 loci and was shown to transactivate the Runx1 element. Together, our data provide a key component of the transcriptional network of early hematopoiesis by identifying downstream targets of Scl that can explain key aspects of the early Scl(-/-) phenotype.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Fígado/embriologia , Fígado/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Saco Vitelino/embriologia , Saco Vitelino/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular , Separação Celular , Sequência Conservada , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteínas com Domínio LIM , Metaloproteínas/genética , Metaloproteínas/metabolismo , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Ligação Proteica , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Alinhamento de Sequência , Proteína 1 de Leucemia Linfocítica Aguda de Células T
7.
Blood ; 110(13): 4188-97, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17823307

RESUMO

The transcription factor Runx1/AML1 is an important regulator of hematopoiesis and is critically required for the generation of the first definitive hematopoietic stem cells (HSCs) in the major vasculature of the mouse embryo. As a pivotal factor in HSC ontogeny, its transcriptional regulation is of high interest but is largely undefined. In this study, we used a combination of comparative genomics and chromatin analysis to identify a highly conserved 531-bp enhancer located at position + 23.5 in the first intron of the 224-kb mouse Runx1 gene. We show that this enhancer contributes to the early hematopoietic expression of Runx1. Transcription factor binding in vivo and analysis of the mutated enhancer in transient transgenic mouse embryos implicate Gata2 and Ets proteins as critical factors for its function. We also show that the SCL/Lmo2/Ldb-1 complex is recruited to the enhancer in vivo. Importantly, transplantation experiments demonstrate that the intronic Runx1 enhancer targets all definitive HSCs in the mouse embryo, suggesting that it functions as a crucial cis-regulatory element that integrates the Gata, Ets, and SCL transcriptional networks to initiate HSC generation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Fator de Transcrição GATA2/fisiologia , Células-Tronco Hematopoéticas/citologia , Proteína Proto-Oncogênica c-ets-1/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Transcrição Gênica , Proteínas Adaptadoras de Transdução de Sinal , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos , Elementos Facilitadores Genéticos/fisiologia , Fator de Transcrição GATA2/metabolismo , Proteínas com Domínio LIM , Metaloproteínas/metabolismo , Camundongos , Complexos Multiproteicos/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA