Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 104(4): 995-1008, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32891065

RESUMO

Rhizoctonia solani is a soil-borne necrotrophic fungus that causes sheath blight in grasses. The basal resistance of compatible interactions between R. solani and rice is known to be modulated by some WRKY transcription factors (TFs). However, genes and defense responses involved in incompatible interaction with R. solani remain unexplored, because no such interactions are known in any host plants. Recently, we demonstrated that Bd3-1, an accession of the model grass Brachypodium distachyon, is resistant to R. solani and, upon inoculation with the fungus, undergoes rapid induction of genes responsive to the phytohormone salicylic acid (SA) that encode the WRKY TFs BdWRKY38 and BdWRKY44. Here, we show that endogenous SA and these WRKY TFs positively regulate this accession-specific R. solani resistance. In contrast to a susceptible accession (Bd21), the infection process in the resistant accessions Bd3-1 and Tek-3 was suppressed at early stages before the development of fungal biomass and infection machinery. A comparative transcriptome analysis during pathogen infection revealed that putative WRKY-dependent defense genes were induced faster in the resistant accessions than in Bd21. A gene regulatory network (GRN) analysis based on the transcriptome dataset demonstrated that BdWRKY38 was a GRN hub connected to many target genes specifically in resistant accessions, whereas BdWRKY44 was shared in the GRNs of all three accessions. Moreover, overexpression of BdWRKY38 increased R. solani resistance in Bd21. Our findings demonstrate that these resistant accessions can activate an incompatible host response to R. solani, and BdWRKY38 regulates this response by mediating SA signaling.


Assuntos
Brachypodium/genética , Resistência à Doença/genética , Doenças das Plantas/imunologia , Rhizoctonia/fisiologia , Fatores de Transcrição/metabolismo , Transcriptoma , Brachypodium/microbiologia , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
2.
Biochem Biophys Res Commun ; 537: 57-63, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33385806

RESUMO

Abscisic acid (ABA) is a major phytohormone that regulates abiotic stress responses and development. SNF1-rerated protein kinase 2 (SnRK2) is a key regulator of ABA signaling. To isolate compounds which directly affect SnRK2 activity, we optimized a fluorescence-based system for high-throughput screening (HTS) of SnRK2 kinase regulators. Using this system, we screened a chemical library consisting of 16,000 compounds and identified ten compounds (INH1-10) as potential SnRK2 inhibitors. Further characterization of these compounds by in vitro phosphorylation assays confirmed that three of the ten compounds were SnRK2-specific kinase inhibitors. In contrast, seven of ten compounds inhibited ABA-responsive gene expression in Arabidopsis cells. From these results, INH1 was identified as a SnRK2-specific inhibitor in vitro and in vivo. We propose that INH1 could be a lead compound of chemical tools for studying ABA responses in various plant species.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Arabidopsis/enzimologia , Ensaios de Triagem em Larga Escala , Inibidores de Proteínas Quinases/análise , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes/metabolismo
3.
Mol Genet Genomics ; 296(2): 299-312, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33386986

RESUMO

Pseudomonas syringae pv. tabaci 6605 (Pta6605) is a causal agent of wildfire disease in host tobacco plants and is highly motile. Pta6605 has multiple clusters of chemotaxis genes including cheA, a gene encoding a histidine kinase, cheY, a gene encoding a response regulator, mcp, a gene for a methyl-accepting chemotaxis protein, as well as flagellar and pili biogenesis genes. However, only two major chemotaxis gene clusters, cluster I and cluster II, possess cheA and cheY. Deletion mutants of cheA or cheY were constructed to evaluate their possible role in Pta6605 chemotaxis and virulence. Motility tests and a chemotaxis assay to known attractant demonstrated that cheA2 and cheY2 mutants were unable to swarm and to perform chemotaxis, whereas cheA1 and cheY1 mutants retained chemotaxis ability almost equal to that of the wild-type (WT) strain. Although WT and cheY1 mutants of Pta6605 caused severe disease symptoms on host tobacco leaves, the cheA2 and cheY2 mutants did not, and symptom development with cheA1 depended on the inoculation method. These results indicate that chemotaxis genes located in cluster II are required for optimal chemotaxis and host plant infection by Pta6605 and that cluster I may partially contribute to these phenotypes.


Assuntos
Histidina Quinase/genética , Proteínas Quimiotáticas Aceptoras de Metil/genética , Nicotiana/microbiologia , Pseudomonas aeruginosa/fisiologia , Pseudomonas syringae/fisiologia , Quimiotaxia , Resistência à Doença , Deleção de Genes , Histidina Quinase/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Família Multigênica , Filogenia , Doenças das Plantas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Pseudomonas syringae/patogenicidade , Virulência
4.
Mol Plant Microbe Interact ; 33(11): 1283-1285, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33000998

RESUMO

Rhizobium (Agrobacterium) is one genus in the family Rhizobiaceae. Most of the species are epi- or endophytic bacteria which include tumorigenic or rhizogenic pathogens, root nodule bacteria, and commensal endosymbionts. Rhizobium vitis strain VAR06-30 is a commensal bacterium without pathogenicity which was isolated from a rootstock of grapevine in Japan. It also does not have antagonistic activity to the pathogenic strain of R. vitis. Here, we show the complete genome sequence data with annotation of R. vitis VAR06-30 which was analyzed by sequence reads obtained from both PacBio and Illumina platforms. This genome sequence would contribute to the understanding of evolutionary lineage and characteristics of Rhizobium commensal bacteria.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Genoma Bacteriano , Tumores de Planta/microbiologia , Rhizobium , Vitis/microbiologia , Filogenia , Rhizobium/genética , Rizosfera
5.
Mol Plant Microbe Interact ; 33(11): 1280-1282, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33000999

RESUMO

Rhizobium vitis strain VAT03-9 (MAFF 211676) is a causal agent of crown gall disease in grapevine. It is one of the pathogenic strains of R. vitis isolated from graft unions of grapevine in Okayama Prefecture, Japan. Inoculation tests verified its virulence for gall formation on grapevine, tomato, and sunflower. It harbors tumor-inducing plasmid. Here, we present the complete genome sequence with annotation of R. vitis VAR03-9 obtained by assembling reads from PacBio and Illumina-sequencers. This genome sequence should be useful for the analyses of pathogenicity and evolutionary lineage of the pathogens of crown gall disease.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Genoma Bacteriano , Tumores de Planta/microbiologia , Rhizobium , Vitis/microbiologia , Rhizobium/genética , Virulência
6.
Mol Plant Microbe Interact ; 33(12): 1451-1453, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33026970

RESUMO

Crown gall disease in grapevine is caused by pathogenic strains of Rhizobium vitis with a tumor-inducing (Ti) plasmids. A nonpathogenic strain, VAR03-1 of R. vitis, has been isolated from the grapevine root of nursery stock and it was shown to act as a biological control agent to crown gall disease. Its disease-suppressive effect was observed even when it was coinoculated with the pathogen in a 1:1 ratio. Here, we present the complete genome data of R. vitis VAR03-1, assembled by sequencing reads obtained by both PacBio and Illumina technologies with annotation. This genome sequence could contribute to investigations of the molecular basis underlying the biocontrol activity as well as the root-colonization ability of this bacterial strain.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Agrobacterium , Genoma Bacteriano , Agrobacterium/genética , Agentes de Controle Biológico , Genoma Bacteriano/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Vitis/microbiologia
7.
Plant Cell Physiol ; 59(8): 1581-1591, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30011034

RESUMO

Mechanical sensing is one of the most fundamental processes for sessile plants to survive and grow. The response is known to involve calcium elevation in the cell. Arabidopsis seedlings grown horizontally on agar plates covered with a dialysis membrane show a 2-fold reduction in root growth compared with those grown vertically, a response to mechanical stress generated due to gravitropism of the root. To understand the molecular mechanism of how plant roots sense and respond to mechanical stimuli, we screened chemical libraries for compounds that affect the horizontal root growth in this experimental system and found that, while having no effect on root gravitropism, omeprazole known as a proton pump inhibitor significantly enhanced the mechanical stress-induced root growth reduction especially in lower pH media. In contrast, omeprazole reversed neither the alleviation of the mechanical stress-induced growth reduction caused by calcium depletion nor the insensitivity to the mechanical stress in the ethylene signaling mutant ein2. Together with the finding that omeprazole increased expression of touch-induced genes and ETHYLENE RESPONSE FACTOR1, our results suggest that the target of omeprazole mediates ethylene signaling in the root growth response to mechanical stress.


Assuntos
Omeprazol/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Estresse Mecânico , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Gravitropismo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
8.
Mol Genet Genomics ; 293(4): 907-917, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29549432

RESUMO

Our previous studies revealed that flagellar-motility-defective mutants such as ∆fliC of Pseudomonas syringae pv. tabaci 6605 (Pta6605) have remarkably reduced production of N-acyl-homoserine lactones (AHL), quorum-sensing molecules. To investigate the reason of loss of AHL production in ∆fliC mutant, we carried out transposon mutagenesis. Among approximately 14,000 transconjugants, we found 11 AHL production-recovered (APR) strains. In these APR strains, a transposon was inserted into either mexE or mexF, genes encoding for the multidrug efflux pump transporter MexEF-OprN, and mexT, a gene encoding a putative transcriptional activator for mexEF-oprN. These results suggest that MexEF-OprN is a negative regulator of AHL production. To confirm the negative effect of MexEF-OprN on AHL production, loss- and gain-of-function experiments for mexEF-oprN were carried out. The ∆fliC∆mexF and ∆fliC∆mexT double mutant strains recovered AHL production, whereas the mexT overexpressing strain abolished AHL production, although the psyI, a gene encoding AHL synthase, is transcribed as wild type. Introduction of a mexF or mexT mutation into another flagellar-motility- and AHL production-defective mutant strain, ∆motCD, also recovered the ability to produce AHL. Furthermore, introduction of the mexF mutation into other AHL production-defective mutant strains such as ∆gacA and ∆aefR also recovered AHL production but not to the ∆psyI mutant. These results indicate that MexEF-OprN is a decisive negative determinant of AHL production and accumulation.


Assuntos
Acil-Butirolactonas/metabolismo , Proteínas de Bactérias , Proteínas de Transporte , Farmacorresistência Bacteriana Múltipla/fisiologia , Pseudomonas syringae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico Ativo/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo
9.
New Phytol ; 217(2): 771-783, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29048113

RESUMO

Rhizoctonia solani is a soil-borne fungus causing sheath blight. In consistent with its necrotrophic life style, no rice cultivars fully resistant to R. solani are known, and agrochemical plant defense activators used for rice blast, which upregulate a phytohormonal salicylic acid (SA)-dependent pathway, are ineffective towards this pathogen. As a result of the unavailability of genetics, the infection process of R. solani remains unclear. We used the model monocotyledonous plants Brachypodium distachyon and rice, and evaluated the effects of phytohormone-induced resistance to R. solani by pharmacological, genetic and microscopic approaches to understand fungal pathogenicity. Pretreatment with SA, but not with plant defense activators used in agriculture, can unexpectedly induce sheath blight resistance in plants. SA treatment inhibits the advancement of R. solani to the point in the infection process in which fungal biomass shows remarkable expansion and specific infection machinery is developed. The involvement of SA in R. solani resistance is demonstrated by SA-deficient NahG transgenic rice and the sheath blight-resistant B. distachyon accessions, Bd3-1 and Gaz-4, which activate SA-dependent signaling on inoculation. Our findings suggest a hemi-biotrophic nature of R. solani, which can be targeted by SA-dependent plant immunity. Furthermore, B. distachyon provides a genetic resource that can confer disease resistance against R. solani to plants.


Assuntos
Brachypodium/microbiologia , Resistência à Doença/efeitos dos fármacos , Oryza/microbiologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos dos fármacos , Rhizoctonia/fisiologia , Ácido Salicílico/farmacologia , Brachypodium/efeitos dos fármacos , Brachypodium/genética , Brachypodium/crescimento & desenvolvimento , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Resistência à Doença/genética , Ecótipo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/efeitos dos fármacos , Doenças das Plantas/genética , Reguladores de Crescimento de Plantas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/isolamento & purificação , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
11.
BMC Plant Biol ; 16: 59, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26935959

RESUMO

BACKGROUND: Brachypodium distachyon is a promising model plants for grasses. Infections of Brachypodium by various pathogens that severely impair crop production have been reported, and the species accordingly provides an alternative platform for investigating molecular mechanisms of pathogen virulence and plant disease resistance. To date, we have a broad picture of plant immunity only in Arabidopsis and rice; therefore, Brachypodium may constitute a counterpart that displays the commonality and uniqueness of defence systems among plant species. Phytohormones play key roles in plant biotic stress responses, and hormone-responsive genes are used to qualitatively and quantitatively evaluate disease resistance responses during pathogen infection. For these purposes, defence-related phytohormone marker genes expressed at time points suitable for defence-response monitoring are needed. Information about their expression profiles over time as well as their response specificity is also helpful. However, useful marker genes are still rare in Brachypodium. RESULTS: We selected 34 candidates for Brachypodium marker genes on the basis of protein-sequence similarity to known marker genes used in Arabidopsis and rice. Brachypodium plants were treated with the defence-related phytohormones salicylic acid, jasmonic acid and ethylene, and their transcription levels were measured 24 and 48 h after treatment. Two genes for salicylic acid, 7 for jasmonic acid and 2 for ethylene were significantly induced at either or both time points. We then focused on 11 genes encoding pathogenesis-related (PR) 1 protein and compared their expression patterns with those of Arabidopsis and rice. Phylogenetic analysis suggested that Brachypodium contains several PR1-family genes similar to rice genes. Our expression profiling revealed that regulation patterns of some PR1 genes as well as of markers identified for defence-related phytohormones are closely related to those in rice. CONCLUSION: We propose that the Brachypodium immune hormone marker genes identified in this study will be useful to plant pathologists who use Brachypodium as a model pathosystem, because the timing of their transcriptional activation matches that of the disease resistance response. Our results using Brachypodium also suggest that monocots share a characteristic immune system, defined as the common defence system, that is different from that of dicots.


Assuntos
Brachypodium/genética , Ciclopentanos/metabolismo , Etilenos/metabolismo , Genes de Plantas , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/genética , Ácido Salicílico/metabolismo , Brachypodium/imunologia , Perfilação da Expressão Gênica , Marcadores Genéticos , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Plant Cell ; 24(9): 3795-804, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22960909

RESUMO

Plant activators are compounds, such as analogs of the defense hormone salicylic acid (SA), that protect plants from pathogens by activating the plant immune system. Although some plant activators have been widely used in agriculture, the molecular mechanisms of immune induction are largely unknown. Using a newly established high-throughput screening procedure that screens for compounds that specifically potentiate pathogen-activated cell death in Arabidopsis thaliana cultured suspension cells, we identified five compounds that prime the immune response. These compounds enhanced disease resistance against pathogenic Pseudomonas bacteria in Arabidopsis plants. Pretreatments increased the accumulation of endogenous SA, but reduced its metabolite, SA-O-ß-d-glucoside. Inducing compounds inhibited two SA glucosyltransferases (SAGTs) in vitro. Double knockout plants that lack both SAGTs consistently exhibited enhanced disease resistance. Our results demonstrate that manipulation of the active free SA pool via SA-inactivating enzymes can be a useful strategy for fortifying plant disease resistance and may identify useful crop protectants.


Assuntos
Arabidopsis/enzimologia , Glucosiltransferases/genética , Doenças das Plantas/imunologia , Pseudomonas/patogenicidade , Ácido Salicílico/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular , Células Cultivadas , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Glucosídeos/metabolismo , Glucosiltransferases/metabolismo , Ensaios de Triagem em Larga Escala , Mutagênese Insercional , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Salicilatos/metabolismo , Bibliotecas de Moléculas Pequenas
13.
Mol Plant Pathol ; 25(1): e13397, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37902589

RESUMO

Rhizoctonia solani AG-1 IA causes a necrotrophic rice disease and is a serious threat to rice production. To date, only a few effectors have been characterized in AG-1 IA. We previously identified RsIA_CtaG/Cox11 and showed that infiltration of the recombinant protein into rice leaves caused disease-like symptoms. In the present study, we further characterized the functionality of RsIA_CtaG/Cox11. RsIA_CtaG/Cox11 is an alternative transcript of cytochrome c oxidase copper chaperone Cox11 that starts from the second AUG codon, but contains a functional secretion signal peptide. RNA interference with RsIA_CtaG/Cox11 reduced the pathogenicity of AG-1 IA towards rice and Nicotiana benthamiana without affecting its fitness or mycelial morphology. Transient expression of the RsIA_CtaG/Cox11-GFP fusion protein demonstrated the localization of RsIA_CtaG/Cox11 to mitochondria. Agro-infiltration of RsIA_CtaG/Cox11 into N. benthamiana leaves inhibited cell death by BAX and INF1. In contrast to rice, agro-infiltration of RsIA_CtaG/Cox11 did not induce cell death in N. benthamiana. However, cell death was observed when it was coinfiltrated with Os_CoxVIIa, which encodes a subunit of cytochrome c oxidase. Os_CoxVIIa appeared to interact with RsIA_CtaG/Cox11. The cell death triggered by coexpression of RsIA_CtaG/Cox11 and Os_CoxVIIa is independent of the leucine-rich repeat receptor kinases BAK1/SOBIR1 and enhanced the susceptibility of N. benthamiana to AG-1 IA. Two of the three evolutionarily conserved cysteine residues at positions 25 and 126 of RsIA_CtaG/Cox11 were essential for its immunosuppressive activity, but not for cell death induction. This report suggests that RsIA_CtaG/Cox11 appears to have a dual role in immunosuppression and cell death induction during pathogenesis.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Oryza , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oryza/genética , Oryza/metabolismo , Mitocôndrias/metabolismo , Rhizoctonia/genética , Rhizoctonia/metabolismo , Imunidade Vegetal/genética , Morte Celular , Doenças das Plantas/genética
14.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365227

RESUMO

Tailocins are headless phage tail structures that mediate interbacterial antagonism. Although the prototypical tailocins, R- and F-pyocins, in Pseudomonas aeruginosa, and other predominantly R-type tailocins have been studied, their presence in Alphaproteobacteria remains unexplored. Here, we report the first alphaproteobacterial F-type tailocin, named rhizoviticin, as a determinant of the biocontrol activity of Allorhizobium vitis VAR03-1 against crown gall. Rhizoviticin is encoded by a chimeric prophage genome, one providing transcriptional regulators and the other contributing to tail formation and cell lysis, but lacking head formation genes. The rhizoviticin genome retains a nearly intact early phage region containing an integrase remnant and replication-related genes critical for downstream gene transcription, suggesting an ongoing transition of this locus from a prophage to a tailocin-coding region. Rhizoviticin is responsible for the most antagonistic activity in VAR03-1 culture supernatant against pathogenic A. vitis strain, and rhizoviticin deficiency resulted in a significant reduction in the antitumorigenic activity in planta. We identified the rhizoviticin-coding locus in eight additional A. vitis strains from diverse geographical locations, highlighting a unique survival strategy of certain Rhizobiales bacteria in the rhizosphere. These findings advance our understanding of the evolutionary dynamics of tailocins and provide a scientific foundation for employing rhizoviticin-producing strains in plant disease control.


Assuntos
Bacteriófagos , Vitis , Tumores de Planta/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Pseudomonas aeruginosa , Bacteriófagos/genética , Vitis/microbiologia
15.
Biopolymers ; 100(1): 64-70, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23335168

RESUMO

In this report, we describe dendritic peptides possessing central fluorescent amino acids with adjacent branched amino acids. These fluorescent-peptide dendrimers were prepared using (9-fluorenyl)methoxycarbonyl (Fmoc)-based solid-phase peptide synthesis and Fmoc-derivative fluorescent and branched amino acids. The branched amino acids featured multiple carboxylic acids in their side chains, making the fluorescent-peptide dendrimers highly water-soluble compared with the analogous peptides containing the fluorescent amino acids only. The branched amino acid units also improved the fluorescence intensity of the dendrimers. Based on high-pressure liquid chromatography and fluorescence spectroscopy results, we determined that the fluorescent groups were located in the core and that the carboxylic acids were located on the surface of the dendrimers. Fluorescence resonance energy transfer was achieved among the three proximal fluorescent groups in one of the fabricated fluorescent-peptide dendrimers.


Assuntos
Aminoácidos , Dendrímeros , Aminoácidos/química , Cromatografia Líquida de Alta Pressão , Estrutura Molecular , Peptídeos/química , Técnicas de Síntese em Fase Sólida
16.
Plant Cell Physiol ; 53(4): 635-45, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22345435

RESUMO

Thermospermine, a structural isomer of spermine, is produced through the action of ACAULIS5 (ACL5) and suppresses xylem differentiation in Arabidopsis thaliana. To elucidate the molecular basis of the function of thermospermine, we screened chemical libraries for compounds that can modulate xylem differentiation in the acl5 mutant, which is deficient in thermospermine and shows a severe dwarf phenotype associated with excessive proliferation of xylem vessels. We found that the isooctyl ester of a synthetic auxin, 2,4-D, remarkably enhanced xylem vessel differentiation in acl5 seedlings. 2,4-D, 2,4-D analogs and IAA analogs, including 4-chloro IAA (4-Cl-IAA) and IAA ethyl ester, also enhanced xylem vessel formation, while IAA alone had little or no obvious effect on xylem differentiation. These effects of auxin analogs were observed only in the acl5 mutant but not in the wild type, and were suppressed by the anti-auxin, p-chlorophenoxyisobutyric acid (PCIB) and α-(phenyl ethyl-2-one)-IAA (PEO-IAA), and also by thermospermine. Furthermore, the suppressor of acaulis51-d (sac51-d) mutation, which causes SAC51 overexpression in the absence of thermospermine and suppresses the dwarf phenotype of acl5, also suppressed the effect of auxin analogs in acl5. These results suggest that the auxin signaling that promotes xylem differentiation is normally limited by SAC51-mediated thermospermine signaling but can be continually stimulated by exogenous auxin analogs in the absence of thermospermine. The opposite action between thermospermine and auxin may fine-tune the timing and spatial pattern of xylem differentiation.


Assuntos
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Espermina/análogos & derivados , Xilema/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Espermina/metabolismo , Xilema/genética , Xilema/crescimento & desenvolvimento
17.
Plant Physiol Biochem ; 192: 273-284, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279746

RESUMO

The plant cell wall is an interface of plant-microbe interactions. The ability of microbes to decompose cell wall polysaccharides contributes to microbial pathogenicity. Plants have evolved mechanisms to prevent cell wall degradation. However, the role of the cell wall in plant-microbe interactions is not well understood. Here, we discuss four functions of the plant cell wall-physical defence, storage of antimicrobial compounds, production of cell wall-derived elicitors, and provision of carbon sources-in the context of plant-microbe interactions. In addition, we discuss the four families of cell surface receptors associated with plant cell walls (malectin-like receptor kinase family, wall-associated kinase family, leucine-rich repeat receptor-like kinase family, and lysin motif receptor-like kinase family) that have been the subject of several important studies in recent years. This review summarises the findings on both plant cell wall and plant immunity, improving our understanding and may provide impetus to various researchers.

18.
Mol Plant Pathol ; 23(6): 885-894, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35233886

RESUMO

Pseudomonas amygdali pv. tabaci (formerly Pseudomonas syringae pv. tabaci; Pta) is a gram-negative bacterium that causes bacterial wildfire disease in Nicotiana tabacum. The pathogen establishes infections by using a type III secretion system to inject type III effector proteins (T3Es) into cells, thereby interfering with the host__s immune system. To counteract the effectors, plants have evolved disease-resistance genes and mechanisms to induce strong resistance on effector recognition. By screening a series of Pta T3E-deficient mutants, we have identified HopAZ1 as the T3E that induces disease resistance in N. tabacum 'N509'. Inoculation with the Pta ∆hopAZ1 mutant did not induce resistance to Pta in N509. We also found that the Pta ∆hopAZ1 mutant did not induce a hypersensitive response and promoted severe disease symptoms in N509. Furthermore, a C-terminal truncated HopAZ1 abolished HopAZ1-dependent cell death in N509. These results indicate that HopAZ1 is the avirulence factor that induces resistance to Pta by N509.


Assuntos
Nicotiana , Incêndios Florestais , Proteínas de Bactérias/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas , Pseudomonas syringae , Nicotiana/microbiologia
19.
Microbes Environ ; 37(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35264479

RESUMO

Pseudomonas syringae pv. tabaci 6605 (Pta6605) is a foliar plant pathogen that causes wildfire disease on tobacco plants. It requires chemotaxis to enter plants and establish infection. While chemotactic signals appear to be the main mechanism by which Pta6605 performs directional movement, the involvement of aerotaxis or energy taxis by this foliar pathogen is currently unknown. Based on domain structures and similarity with more than 50 previously identified putative methyl-accepting chemotaxis proteins (MCPs), the genome of Pta6605 encodes three potential aerotaxis transducers. We identified AerA as the main aerotaxis transducer and found that it possesses a taxis-to-serine-and-repellent (Tsr)-like domain structure that supports a periplasmic 4HB-type ligand-binding domain (LBD). The secondary aerotaxis transducer, AerB, possesses a cytosolic PAS-type LBD, similar to the Aer of Escherichia coli and Pseudomonas aeruginosa. Aerotaxis ability by single and double mutant strains of aerA and aerB was weaker than that by wild-type Pta6605. On the other hand, another cytosolic PAS-type LBD containing MCP did not make a major contribution to Pta6605 aerotaxis in our assay system. Furthermore, mutations in aerotaxis transducer genes did not affect surface motility or chemotactic attraction to yeast extract. Single and double mutant strains of aerA and aerB showed less colonization in the early stage of host plant infection and lower biofilm production than wild-type Pta6605. These results demonstrate the presence of aerotaxis transducers and their contribution to host plant infection by Pta6605.


Assuntos
Quimiotaxia , Pseudomonas syringae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quimiotaxia/genética , Escherichia coli/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil , Doenças das Plantas , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Nicotiana
20.
Life (Basel) ; 12(1)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054469

RESUMO

Rhizoctonia solani is a necrotrophic plant pathogen with a wide host range. R. solani is a species complex consisting of thirteen anastomosis groups (AGs) defined by compatibility of hyphal fusion reaction and subgroups based on cultural morphology. The relationship between such classifications and host specificity remains elusive. Here, we investigated the pathogenicity of seventeen R. solani isolates (AG-1 to 7) in Japan towards Arabidopsis thaliana using leaf and soil inoculations. The tested AGs, except AG-3 and AG-6, induced symptoms in both methods with variations in pathogenicity. The virulence levels differed even within the same AG and subgroup. Some isolates showed tissue-specific infection behavior. Thus, the AGs and their subgroups are suggested to be not enough to define the virulence (host and tissue specificity) of R. solani. We also evaluated the virulence of the isolates on Arabidopsis plants pretreated with salicylic acid, jasmonic acid, and ethylene. No obvious effects were detected on the symptom formation by the virulence isolates, but ethylene and salicylic acid slightly enhanced the susceptibility to the weak and nonvirulent isolates. R. solani seems to be able to overcome the induced defense by these phytohormones in the infection to Arabidopsis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA