Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 23(11): 4146-63, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22128123

RESUMO

Abscission occurs specifically in the abscission zone (AZ) tissue as a natural stage of plant development. Previously, we observed delay of tomato (Solanum lycopersicum) leaf abscission when the LX ribonuclease (LX) was inhibited. The known association between LX expression and programmed cell death (PCD) suggested involvement of PCD in abscission. In this study, hallmarks of PCD were identified in the tomato leaf and flower AZs during the late stage of abscission. These included loss of cell viability, altered nuclear morphology, DNA fragmentation, elevated levels of reactive oxygen species and enzymatic activities, and expression of PCD-associated genes. Overexpression of antiapoptotic proteins resulted in retarded abscission, indicating PCD requirement. PCD, LX, and nuclease gene expression were visualized primarily in the AZ distal tissue, demonstrating an asymmetry between the two AZ sides. Asymmetric expression was observed for genes associated with cell wall hydrolysis, leading to AZ, or associated with ethylene biosynthesis, which induces abscission. These results suggest that different abscission-related processes occur asymmetrically between the AZ proximal and distal sides. Taken together, our findings identify PCD as a key mechanism that occurs asymmetrically during normal progression of abscission and suggest an important role for LX in this PCD process.


Assuntos
Flores/fisiologia , Folhas de Planta/fisiologia , Solanum lycopersicum/citologia , Apoptose , Sobrevivência Celular , Fragmentação do DNA , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Etilenos/metabolismo , Flores/citologia , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/fisiologia , Dados de Sequência Molecular , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Folhas de Planta/citologia , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo
2.
Arch Insect Biochem Physiol ; 79(3): 153-81, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22392802

RESUMO

The Colorado potato beetle (Leptinotarsa decemlineata) is the most important pest of potato in many areas of the world. One of the main reasons for its success lies in the ability of its larvae to counteract plant defense compounds. Larvae adapt to protease inhibitors (PIs) produced in potato leaves through substitution of inhibitor-sensitive digestive cysteine proteases with inhibitor-insensitive cysteine proteases. To get a broader insight into the basis of larval adaptation to plant defenses, we created a "suppression subtractive hybridisation" library using cDNA from the gut of L. decemlineata larvae fed methyl jasmonate-induced or uninduced potato leaves. Four hundred clones, randomly selected from the library, were screened for their relevance to adaptation with DNA microarray hybridizations. Selected enzyme systems of beetle digestion were further inspected for changes in gene expression using quantitative PCR and enzyme activity measurements. We identified two new groups of digestive cysteine proteases, intestains D and intestains E. Intestains D represent a group of structurally distinct digestive cysteine proteases, of which the tested members are strongly upregulated in response to induced plant defenses. Moreover, we found that other digestive enzymes also participate in adaptation, namely, cellulases, serine proteases, and an endopolygalacturonase. In addition, juvenile hormone binding protein-like (JHBP-like) genes were upregulated. All studied genes were expressed specifically in larval guts. In contrast to earlier studies that reported experiments based on PI-enriched artificial diets, our results increase understanding of insect adaptation under natural conditions.


Assuntos
Adaptação Fisiológica , Besouros/genética , Interações Hospedeiro-Parasita , Proteínas de Insetos/genética , Solanum tuberosum/parasitologia , Sequência de Aminoácidos , Animais , Celulase/genética , Quimotripsina/genética , Quimotripsina/metabolismo , Besouros/metabolismo , Defensinas/genética , Trato Gastrointestinal/metabolismo , Expressão Gênica , Genoma de Inseto , Larva/fisiologia , Dados de Sequência Molecular , Poligalacturonase/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência
3.
Plants (Basel) ; 10(4)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805409

RESUMO

Understanding temporal biological phenomena is a challenging task that can be approached using network analysis. Here, we explored whether network reconstruction can be used to better understand the temporal dynamics of bois noir, which is associated with 'Candidatus Phytoplasma solani', and is one of the most widespread phytoplasma diseases of grapevine in Europe. We proposed a methodology that explores the temporal network dynamics at the community level, i.e., densely connected subnetworks. The methodology offers both insights into the functional dynamics via enrichment analysis at the community level, and analyses of the community dissipation, as a measure that accounts for community degradation. We validated this methodology with cases on experimental temporal expression data of uninfected grapevines and grapevines infected with 'Ca. P. solani'. These data confirm some known gene communities involved in this infection. They also reveal several new gene communities and their potential regulatory networks that have not been linked to 'Ca. P. solani' to date. To confirm the capabilities of the proposed method, selected predictions were empirically evaluated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA