Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38138995

RESUMO

This article presents the synthesis and molecular dynamics investigation of three novel cyclic thioethers: 2,3-(4'-methylbenzo)-1,4,7,10-tetrathiacyclododeca-2-ene (compound 1), 2,3,14,15-bis(4',4″(5″)-methylbenzo)-1,4,7,10,13,16,19,22,25-octathiacyclotetracosa-2,14-diene (compound 2), and 2,3,8,9-bis(4',4″(5″)-methylbenzo)-1,4,7,10-tetrathiacyclododeca-2,8-diene (compound 3). The compounds exhibit relatively high glass transition temperatures (Tg), which range between 254 and 283 K. This characteristic positions them within the so-far limited category of crown-like glass-formers. We demonstrate that cyclic thioethers may span both the realms of ordinary and sizeable molecular glass-formers, each featuring distinct physical properties. Furthermore, we show that the Tg follows a sublinear power law as a function of the molar mass within this class of compounds. We also reveal multiple dielectric relaxation processes of the novel cyclic thioethers. Above the Tg, their dielectric loss spectra are dominated by a structural relaxation, which originates from the cooperative reorientation of entire molecules and exhibits an excess wing on its high-frequency slope. This feature has been attributed to the Johari-Goldstein (JG) process. Each investigated compound exhibits also at least one intramolecular secondary non-JG relaxation stemming from conformational changes. Their activation energies range from approximately 19 kJ/mol to roughly 40 kJ/mol. Finally, we analyze the high-pressure molecular dynamics of compound 1, revealing a pressure-induced increase in its Tg with a dTg/dp coefficient equal to 197 ± 8 K/GPa.


Assuntos
Vidro , Simulação de Dinâmica Molecular , Animais , Temperatura de Transição , Temperatura , Vidro/química
2.
Int J Mol Sci ; 23(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35563574

RESUMO

Glass-forming ability is one of the most desired properties of organic compounds dedicated to optoelectronic applications. Therefore, finding general structure-property relationships and other rules governing vitrification and related near-glass-transition phenomena is a burning issue for numerous compound families, such as Schiff bases. Hence, we employ differential scanning calorimetry, broadband dielectric spectroscopy, X-ray diffraction and quantum density functional theory calculations to investigate near-glass-transition phenomena, as well as ambient- and high-pressure molecular dynamics for two structurally related Schiff bases belonging to the family of glycine imino esters. Firstly, the surprising great stability of the supercooled liquid phase is shown for these compounds, also under high-pressure conditions. Secondly, atypical self-organization via bifurcated hydrogen bonds into lasting centrosymmetric dimers is proven. Finally, by comparing the obtained results with the previous report, some general rules that govern ambient- and high-pressure molecular dynamics and near-glass transition phenomena are derived for the family of glycine imino esters. Particularly, we derive a mathematical formula to predict and tune their glass transition temperature (Tg) and its pressure coefficient (dTg/dp). We also show that, surprisingly, despite the presence of intra- and intermolecular hydrogen bonds, van der Waals and dipole-dipole interactions are the main forces governing molecular dynamics and dielectric properties of glycine imino esters.


Assuntos
Bases de Schiff , Vitrificação , Varredura Diferencial de Calorimetria , Glicina , Temperatura de Transição
3.
Phys Chem Chem Phys ; 22(32): 17948-17959, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32747880

RESUMO

In this work, we report the synthesis, unexpected glass-forming properties, molecular dynamics and conformational analysis of two thiacrown ethers: 6-methyl-2,3-dihydro-1,4-benzodithiine (1), with a six-membered heterocyclic ring, and macrocyclic 2,3-(4'-methylbenzo)-1,4-dithia-7-oxacyclononane (2). Based on the calorimetric studies, we showed that compound 1 is a viscous liquid at room temperature undergoing vitrification at 192 K. Compound 2 is a crystalline solid at room temperature characterized by a melting point at 331 K; however, it can be vitrified with ease after being melted by cooling down to 224 K. This gave us the unique possibility to analyze the dielectric response and to follow the molecular dynamics in supercooled liquid and glassy states for each thiacrown ether. Two relaxation processes were found for compound 1, which are structural α-relaxation, connected with the collective rotational motions of molecules in a liquid, and a low-temperature secondary γ-process, resulting from conformational changes in the heterocyclic ring. Beside these two relaxation processes, an additional intermolecular ß-process of JG type was detected in the case of compound 2. Finally, based on the analysis of the thermal evolution of the Kirkwood-Fröhlich factor, it has also been shown that thiacrown ethers may be characterized by a local ordering between neighboring molecules in the supercooled liquid state.

4.
J Phys Chem B ; 128(8): 1915-1926, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38379513

RESUMO

Despite decades of studies, a clear understanding of near-Tg phenomena remains challenging for glass-forming systems. This review delves into the intricate molecular dynamics of the small, heterocyclic thioether, 6-methyl-2,3-dihydro-1,4-benzodithiine (MeBzS2), with a particular focus on its near-Tg cold crystallization and relaxation mechanisms. Investigating isothermal crystallization kinetics at various temperatures reveals a significant interplay between its molecular dynamics and recrystallization from a supercooled liquid. We also identify two independent interconversion paths between energetically privileged conformers, characterized by strained transition states. We demonstrate that these spatial transformations induce substantial alterations in the dipole moment orientation and magnitude. Our investigation also extends to the complex salt PdCl2(MeBzS2), where we observe the transient conformers directly, revealing a direct relationship between their abundance and the local or macroscopic electric field. The initially energetically privileged isomers in an undisturbed system become less favored in the presence of an external electric field or ions, resulting even in an unexpected inversion of states. Consequently, we confirm the intramolecular character of secondary relaxation in MeBzS2 and its mechanism related to conformational changes within the heterocyclic ring. The research is based on the combination of broadband dielectric spectroscopy, X-ray diffraction, and quantum density functional theory calculations.

5.
J Phys Chem B ; 128(20): 5055-5063, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38726555

RESUMO

Molecular dynamics and transport coefficients change significantly around the so-called Arrhenius crossover in glass-forming systems. In this article, we revisit the dynamic processes occurring in a glass-forming macrocyclic crown thiaether MeBzS2O above its glass transition, revealing two crossover temperatures: TB at 309 and TA at 333 K. We identify the second one as the Arrhenius crossover that is closely related to the normal-to-supercooled liquid transition in this compound. We show that the transformation occurring at this point goes far beyond molecular dynamics (where the temperature dependence of structural relaxation times changes its character from activation-like to super-Arrhenius), being reflected also in the internal structure and diffraction pattern. In this respect, we found a twofold local organization of the nearest-neighbor molecules via weak van der Waals forces, without the formation of any medium-range order or mesophases. The nearest surrounding of each molecule evolves structurally in time due to the ongoing fast conformational changes. We identify several conformers of MeBzS2O, demonstrating that its lowest-energy conformation is preferred mainly at lower temperatures, i.e., in the supercooled liquid state. Its increased prevalence modifies locally the short-range intermolecular order and promotes vitrification. Consequently, we indicate that the Arrhenius transition is fuelled rather by conformational changes in this glass-forming macrocyclic crown thiaether, which is a different scenario from the so-far existing concepts. Our studies combine broadband dielectric spectroscopy (BDS), X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, molecular dynamics (MD) simulations, and density functional theory (DFT) calculations.

6.
ACS Energy Lett ; 9(6): 2696-2702, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38903402

RESUMO

In metal halide perovskites, the complex dielectric screening together with low energy of phonon modes leads to non-negligible Fröhlich coupling. While this feature of perovskites has already been used to explain some of the puzzling aspects of carrier transport in these materials, the possible impact of polaronic effects on the optical response, especially excitonic properties, is much less explored. Here, with the use of magneto-optical spectroscopy, we revealed the non-hydrogenic character of the excitons in metal halide perovskites, resulting from the pronounced Fröhlich coupling. Our results can be well described by the polaronic-exciton picture where electron and hole interactions are no longer described by a Coulomb potential. Furthermore, we show experimental evidence that the carrier-phonon interaction leads to the enhancement of the carrier's effective mass. Notably, our measurements reveal a pronounced temperature dependence of the carrier's effective mass, which we attribute to a band structure renormalization induced by the population of low-energy phonon modes. This interpretation finds support in our first-principles calculations.

7.
Phys Rev E ; 108(2-1): 024603, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723707

RESUMO

Molecular dynamics simulations supported by x-ray-diffraction experimental data were utilized to demonstrate how replacing the cyclic ring with the phenyl one in molecules of alcohols significantly differentiates their nanostructure by reducing the number of H-bonded clusters. Besides, molecules in the phenyl alcohols associate themselves in clusters via phenyl ring organization which likely is the result of OH⋯π and π⋯π interactions. Thus, at room temperature, the supramolecular structure of phenyl alcohols is more heterogeneous and governed by the formation of various clusters arising due to three types of interactions, while in cyclic alcohols, the H bonding controls the association of molecules. We believe that our methodology could be applied to better understand the fundamental process of association via H bonding and the competitive aggregation caused by phenyl rings.

8.
ACS Appl Mater Interfaces ; 14(1): 1460-1471, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34965720

RESUMO

Hybrid organic-inorganic perovskites providing integrated functionalities for multimodal switching applications are widely sought-after materials for optoelectronics. Here, we embark on a study of a novel pyrrolidinium-based cyanide perovskite of formula (C4H10N)2KCr(CN)6, which displays thermally driven bimodal switching characteristics associated with an order-disorder phase transition. Dielectric switching combines two features important from an application standpoint: high permittivity contrast (Δε' = 38.5) and very low dielectric losses. Third-order nonlinear optical switching takes advantage of third-harmonic generation (THG) bistability, thus far unprecedented for perovskites and coordination polymers. Structurally, (C4H10N)2KCr(CN)6 stands out as the first example of a three-dimensional stable perovskite among formate-, azide-, and cyanide-based metal-organic frameworks comprising large pyrrolidinium cations. Its stability, reflected also in robust switching characteristics, has been tracked down to the Cr3+ component, the ionic radius of which provides a large enough metal-cyanide cage for the pyrrolidinium cargo. While the presence of polar pyrrolidinium cations leads to excellent switchable dielectric properties, the presence of Cr3+ is also responsible for efficient phosphorescence, which is remarkably shifted to the near-infrared region (770 to 880 nm). The presence of Cr3+ was also found indispensable to the THG switching functionality. It is also found that a closely related cobalt-based analogue doped with Cr3+ ions displays distinct near-infrared phosphorescence as well. Thus, doping with Cr3+ ions is an effective strategy to introduce phosphorescence as an additional functional property into the family of cobalt-cyanide thermally switchable dielectrics.

9.
Dalton Trans ; 50(48): 17906-17910, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34854860

RESUMO

A combination of structural, dielectric and calorimetric studies is used to describe a highly atypical behaviour of novel hybrid formate [NH3(CH2)3NH2(CH2)3NH3][Mn(HCOO)3]3, incorporating large triprotonated molecular cations. Two successive phase transitions, switching between fast multiple rotor modes, and the surprising probable coexistence of static and dynamic disorder are discussed for this compound.

10.
Materials (Basel) ; 14(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34279261

RESUMO

A series of Co2+-doped and Gd3+-co-doped calcium molybdato-tungstates, i.e., Ca1-3x-yCoyxGd2x(MoO4)1-3x(WO4)3x (CCGMWO), where 0 < x ≤ 0.2, y = 0.02 and represents vacancy, were successfully synthesized by high-temperature solid-state reaction method. XRD studies and diffuse reflectance UV-vis spectral analysis confirmed the formation of single, tetragonal scheelite-type phases with space group I41/a and a direct optical band gap above 3.5 eV. Magnetic and electrical measurements showed insulating behavior with n-type residual electrical conductivity, an almost perfect paramagnetic state with weak short-range ferromagnetic interactions, as well as an increase of spin contribution to the magnetic moment and an increase in the power factor with increasing gadolinium ions in the sample. Broadband dielectric spectroscopy measurements and dielectric analysis in the frequency representation showed a relatively high value of dielectric permittivity at low frequencies, characteristic of a space charge polarization and small values of both permittivity and loss tangent at higher frequencies.

11.
J Phys Chem Lett ; 12(8): 2142-2147, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33625856

RESUMO

A series of five alcohols (3-methyl-2-butanol, 1-cyclopropylethanol, 1-cyclopentylethanol, 1-cyclohexylethanol, and 1-phenylethanol) was used to study the impact of the size of steric hindrance and its aromaticity on self-assembling phenomena in the liquid phase. In this Letter, we have explicitly shown that the phenyl ring exerts a much stronger effect on the self-organization of molecules via the O-H···O scheme than any other type of steric hindrance, leading to a significant decline in the size and concentration of the H-bonded clusters. Given the combination of calorimetric, dielectric, infrared, and diffraction studies, this phenomenon was ascribed to its additional proton-acceptor function for the competitive intermolecular O-H···π interactions. The consequence of this is a different packing of molecules on the short- and medium-range scale.

12.
Materials (Basel) ; 13(11)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466353

RESUMO

This paper reports on the electrical and broadband dielectric spectroscopy studies of Zn2-xMgxInV3O11 materials (where x = 0.0, 0.4, 1.0, 1.6, 2.0) synthesized using a solid-state reaction method. These studies showed n-type semiconducting properties with activation energies of 0.147-0.52 eV in the temperature range of 250-400 K, symmetric and linear I-V characteristics, both at 300 and 400 K, with a stronger carrier emission for the matrix and much less for the remaining samples, as well as the dipole relaxation, which was the slowest for the sample with x = 0.0 (matrix) and was faster for Mg-doped samples with x > 0.0. The faster the dipole relaxation, the greater the accumulation of electric charge. These effects were analyzed within a framework of the DC conductivity and the Cole-Cole fit function, including the solid-state density and porosity of the sample. The resistivity vs. temperature dependence was well fitted using the parallel resistor model. Our ab initio calculations also show that the bandgap increased with the Mg content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA