Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
PLoS Biol ; 22(6): e3002682, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843310

RESUMO

In exploring the evolutionary trajectories of both pathogenesis and karyotype dynamics in fungi, we conducted a large-scale comparative genomic analysis spanning the Cryptococcus genus, encompassing both global human fungal pathogens and nonpathogenic species, and related species from the sister genus Kwoniella. Chromosome-level genome assemblies were generated for multiple species, covering virtually all known diversity within these genera. Although Cryptococcus and Kwoniella have comparable genome sizes (about 19.2 and 22.9 Mb) and similar gene content, hinting at preadaptive pathogenic potential, our analysis found evidence of gene gain (via horizontal gene transfer) and gene loss in pathogenic Cryptococcus species, which might represent evolutionary signatures of pathogenic development. Genome analysis also revealed a significant variation in chromosome number and structure between the 2 genera. By combining synteny analysis and experimental centromere validation, we found that most Cryptococcus species have 14 chromosomes, whereas most Kwoniella species have fewer (11, 8, 5, or even as few as 3). Reduced chromosome number in Kwoniella is associated with formation of giant chromosomes (up to 18 Mb) through repeated chromosome fusion events, each marked by a pericentric inversion and centromere loss. While similar chromosome inversion-fusion patterns were observed in all Kwoniella species with fewer than 14 chromosomes, no such pattern was detected in Cryptococcus. Instead, Cryptococcus species with less than 14 chromosomes showed reductions primarily through rearrangements associated with the loss of repeat-rich centromeres. Additionally, Cryptococcus genomes exhibited frequent interchromosomal translocations, including intercentromeric recombination facilitated by transposons shared between centromeres. Overall, our findings advance our understanding of genetic changes possibly associated with pathogenicity in Cryptococcus and provide a foundation to elucidate mechanisms of centromere loss and chromosome fusion driving distinct karyotypes in closely related fungal species, including prominent global human pathogens.


Assuntos
Cromossomos Fúngicos , Cryptococcus , Evolução Molecular , Genoma Fúngico , Genômica , Cariótipo , Cryptococcus/genética , Cryptococcus/patogenicidade , Cryptococcus/classificação , Cromossomos Fúngicos/genética , Genômica/métodos , Filogenia , Sintenia , Centrômero/genética , Criptococose/microbiologia , Humanos
2.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443185

RESUMO

Type II tail-anchored (TA) membrane proteins are involved in diverse cellular processes, including protein translocation, vesicle trafficking, and apoptosis. They are characterized by a single C-terminal transmembrane domain that mediates posttranslational targeting and insertion into the endoplasmic reticulum (ER) via the Guided-Entry of TA proteins (GET) pathway. The GET system was originally described in mammals and yeast but was recently shown to be partially conserved in other eukaryotes, such as higher plants. A newly synthesized TA protein is shielded from the cytosol by a pretargeting complex and an ATPase that delivers the protein to the ER, where membrane receptors (Get1/WRB and Get2/CAML) facilitate insertion. In the model plant Arabidopsis thaliana, most components of the pathway were identified through in silico sequence comparison, however, a functional homolog of the coreceptor Get2/CAML remained elusive. We performed immunoprecipitation-mass spectrometry analysis to detect in vivo interactors of AtGET1 and identified a membrane protein of unknown function with low sequence homology but high structural homology to both yeast Get2 and mammalian CAML. The protein localizes to the ER membrane, coexpresses with AtGET1, and binds to Arabidopsis GET pathway components. While loss-of-function lines phenocopy the stunted root hair phenotype of other Atget lines, its heterologous expression together with the coreceptor AtGET1 rescues growth defects of Δget1get2 yeast. Ectopic expression of the cytosolic, positively charged N terminus is sufficient to block TA protein insertion in vitro. Our results collectively confirm that we have identified a plant-specific GET2 in Arabidopsis, and its sequence allows the analysis of cross-kingdom pathway conservation.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Arabidopsis/genética , Retículo Endoplasmático/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Fenótipo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
PLoS Genet ; 16(3): e1008646, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32150559

RESUMO

Centromeres are chromosomal regions that serve as platforms for kinetochore assembly and spindle attachments, ensuring accurate chromosome segregation during cell division. Despite functional conservation, centromere DNA sequences are diverse and often repetitive, making them challenging to assemble and identify. Here, we describe centromeres in an oomycete Phytophthora sojae by combining long-read sequencing-based genome assembly and chromatin immunoprecipitation for the centromeric histone CENP-A followed by high-throughput sequencing (ChIP-seq). P. sojae centromeres cluster at a single focus at different life stages and during nuclear division. We report an improved genome assembly of the P. sojae reference strain, which enabled identification of 15 enriched CENP-A binding regions as putative centromeres. By focusing on a subset of these regions, we demonstrate that centromeres in P. sojae are regional, spanning 211 to 356 kb. Most of these regions are transposon-rich, poorly transcribed, and lack the histone modification H3K4me2 but are embedded within regions with the heterochromatin marks H3K9me3 and H3K27me3. Strikingly, we discovered a Copia-like transposon (CoLT) that is highly enriched in the CENP-A chromatin. Similar clustered elements are also found in oomycete relatives of P. sojae, and may be applied as a criterion for prediction of oomycete centromeres. This work reveals a divergence of centromere features in oomycetes as compared to other organisms in the Stramenopila-Alveolata-Rhizaria (SAR) supergroup including diatoms and Plasmodium falciparum that have relatively short and simple regional centromeres. Identification of P. sojae centromeres in turn also advances the genome assembly.


Assuntos
Centrômero/genética , Oomicetos/genética , Phytophthora/genética , Alveolados/genética , Centrômero/metabolismo , Proteína Centromérica A/genética , Cromatina/genética , Imunoprecipitação da Cromatina/métodos , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , Heterocromatina/genética , Histonas/genética , Cinetocoros/metabolismo , Cinetocoros/fisiologia , Phytophthora/metabolismo , Rhizaria/genética , Estramenópilas/genética
4.
PLoS Genet ; 15(9): e1008365, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31490920

RESUMO

Sexual development is a key evolutionary innovation of eukaryotes. In many species, mating involves interaction between compatible mating partners that can undergo cell and nuclear fusion and subsequent steps of development including meiosis. Mating compatibility in fungi is governed by the mating type (MAT) loci. In basidiomycetes, the ancestral state is hypothesized to be tetrapolar, with two genetically unlinked MAT loci containing homeodomain transcription factor genes (HD locus) and pheromone and pheromone receptor genes (P/R locus), respectively. Alleles at both loci must differ between mating partners for completion of sexual development. However, there are also basidiomycetes with bipolar mating systems, which can arise through genomic linkage of the HD and P/R loci. In the order Tremellales, bipolarity is found only in the pathogenic Cryptococcus species. Here, we describe the analysis of MAT loci from 24 species of the Trichosporonales, a sister order to the Tremellales. In all of the species analyzed, the MAT loci are fused and a single HD gene is present in each mating type, similar to the organization in the pathogenic Cryptococci. However, the HD and P/R allele combinations in the Trichosporonales are different from those in the pathogenic Cryptococci. This and the existence of tetrapolar species in the Tremellales suggest that fusion of the HD and P/R loci occurred independently in the Trichosporonales and pathogenic Cryptococci, supporting the hypothesis of convergent evolution towards fused MAT regions, similar to previous findings in other fungal groups. Unlike the fused MAT loci in several other basidiomycete lineages though, the gene content and gene order within the fused MAT loci are highly conserved in the Trichosporonales, and there is no apparent suppression of recombination extending from the MAT loci to adjacent chromosomal regions, suggesting different mechanisms for the evolution of physically linked MAT loci in these groups.


Assuntos
Basidiomycota/genética , Genes Fúngicos Tipo Acasalamento/genética , Trichosporon/genética , Alelos , Basidiomycota/metabolismo , Evolução Molecular , Proteínas Fúngicas/genética , Fungos/genética , Genes Fúngicos Tipo Acasalamento/fisiologia , Ligação Genética/genética , Proteínas de Homeodomínio/metabolismo , Meiose/genética , Feromônios/genética , Filogenia , Reprodução/genética , Fatores de Transcrição/genética , Trichosporon/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(10): 2490-2495, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463727

RESUMO

Actinomycetes are known for producing diverse secondary metabolites. Combining genomics with untargeted data-dependent tandem MS and molecular networking, we characterized the secreted metabolome of the tunicamycin producer Streptomyces chartreusis NRRL 3882. The genome harbors 128 predicted biosynthetic gene clusters. We detected >1,000 distinct secreted metabolites in culture supernatants, only 22 of which were identified based on standards and public spectral libraries. S. chartreusis adapts the secreted metabolome to cultivation conditions. A number of metabolites are produced iron dependently, among them 17 desferrioxamine siderophores aiding in iron acquisition. Eight previously unknown members of this long-known compound class are described. A single desferrioxamine synthesis gene cluster was detected in the genome, yet different sets of desferrioxamines are produced in different media. Additionally, a polyether ionophore, differentially produced by the calcimycin biosynthesis cluster, was discovered. This illustrates that metabolite output of a single biosynthetic machine can be exquisitely regulated not only with regard to product quantity but also with regard to product range. Compared with chemically defined medium, in complex medium, total metabolite abundance was higher, structural diversity greater, and the average molecular weight almost doubled. Tunicamycins, for example, were only produced in complex medium. Extrapolating from this study, we anticipate that the larger part of bacterial chemistry, including chemical structures, ecological functions, and pharmacological potential, is yet to be uncovered.


Assuntos
Metaboloma/fisiologia , Sideróforos , Streptomyces/química , Streptomyces/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Desferroxamina/química , Desferroxamina/metabolismo , Redes e Vias Metabólicas , Metabolômica , Modelos Moleculares , Sideróforos/química , Sideróforos/metabolismo
6.
PLoS Biol ; 15(8): e2002527, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28800596

RESUMO

Species within the human pathogenic Cryptococcus species complex are major threats to public health, causing approximately 1 million annual infections globally. Cryptococcus amylolentus is the most closely known related species of the pathogenic Cryptococcus species complex, and it is non-pathogenic. Additionally, while pathogenic Cryptococcus species have bipolar mating systems with a single large mating type (MAT) locus that represents a derived state in Basidiomycetes, C. amylolentus has a tetrapolar mating system with 2 MAT loci (P/R and HD) located on different chromosomes. Thus, studying C. amylolentus will shed light on the transition from tetrapolar to bipolar mating systems in the pathogenic Cryptococcus species, as well as its possible link with the origin and evolution of pathogenesis. In this study, we sequenced, assembled, and annotated the genomes of 2 C. amylolentus isolates, CBS6039 and CBS6273, which are sexual and interfertile. Genome comparison between the 2 C. amylolentus isolates identified the boundaries and the complete gene contents of the P/R and HD MAT loci. Bioinformatic and chromatin immunoprecipitation sequencing (ChIP-seq) analyses revealed that, similar to those of the pathogenic Cryptococcus species, C. amylolentus has regional centromeres (CENs) that are enriched with species-specific transposable and repetitive DNA elements. Additionally, we found that while neither the P/R nor the HD locus is physically closely linked to its centromere in C. amylolentus, and the regions between the MAT loci and their respective centromeres show overall synteny between the 2 genomes, both MAT loci exhibit genetic linkage to their respective centromere during meiosis, suggesting the presence of recombinational suppressors and/or epistatic gene interactions in the MAT-CEN intervening regions. Furthermore, genomic comparisons between C. amylolentus and related pathogenic Cryptococcus species provide evidence that multiple chromosomal rearrangements mediated by intercentromeric recombination have occurred during descent of the 2 lineages from their common ancestor. Taken together, our findings support a model in which the evolution of the bipolar mating system was initiated by an ectopic recombination event mediated by similar repetitive centromeric DNA elements shared between chromosomes. This translocation brought the P/R and HD loci onto the same chromosome, and further chromosomal rearrangements then resulted in the 2 MAT loci becoming physically linked and eventually fusing to form the single contiguous MAT locus that is now extant in the pathogenic Cryptococcus species.


Assuntos
Cryptococcus/citologia , Cryptococcus/genética , Genes Fúngicos Tipo Acasalamento , Genoma Fúngico , Meiose , Translocação Genética , Imunoprecipitação da Cromatina , Biologia Computacional , Troca Genética , Cryptococcus/crescimento & desenvolvimento , Cryptococcus/fisiologia , Cryptococcus neoformans/citologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/fisiologia , Epistasia Genética , Evolução Molecular , Ligação Genética , Loci Gênicos , Estruturas Genéticas , Desequilíbrio de Ligação , Anotação de Sequência Molecular , Recombinação Genética , Análise de Sequência de RNA , Especificidade da Espécie , Sintenia
7.
Appl Microbiol Biotechnol ; 104(9): 3691-3704, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32162092

RESUMO

Fruiting bodies are among the most complex multicellular structures formed by fungi, and the molecular mechanisms that regulate their development are far from understood. However, studies with a number of fungal model organisms have started to shed light on this developmental process. One of these model organisms is Sordaria macrospora, a filamentous ascomycete from the order Sordariales. This fungus has been a genetic model organism since the 1950s, but its career as a model organism for molecular genetics really took off in the 1990s, when the establishment of a transformation protocol, a mutant collection, and an indexed cosmid library provided the methods and resources to start revealing the molecular mechanisms of fruiting body development. In the 2000s, "omics" methods were added to the S. macrospora tool box, and by 2020, 58 developmental genes have been identified in this fungus. This review gives a brief overview of major method developments for S. macrospora, and then focuses on recent results characterizing different processes involved in regulating development including several regulatory protein complexes, autophagy, transcriptional and chromatin regulation, and RNA editing. KEY POINTS: •Sordaria macrospora is a model system for analyzing fungal fruiting body development. •More than 100 developmental mutants are available for S. macrospora. •More than 50 developmental genes have been characterized in S. macrospora.


Assuntos
Carpóforos/genética , Carpóforos/fisiologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Sordariales/genética , Autofagia/genética , Edição de RNA , Sordariales/fisiologia , Fatores de Transcrição/genética
8.
Mol Microbiol ; 110(6): 1045-1065, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30240513

RESUMO

In the human pathogenic mold Aspergillus fumigatus, sexual identity is determined by the mating-type idiomorphs MAT1-1 and MAT1-2 residing at the MAT locus. Upon crossing of compatible partners, a heterothallic mating is executed to eventually form cleistothecia that contain recombinant ascospores. Given that the MAT1 gene products are DNA binding master regulators that govern this complex developmental process, we monitored the MAT1-driven transcriptomes of A. fumigatus by conditional overexpression of either MAT1 gene followed by RNA-seq analyses. Numerous genes related to the process of mating were found to be under transcriptional control, such as pheromone production and recognition. Substantial differences between the MAT1-1- and MAT1-2-driven transcriptomes could be detected by functional categorization of differentially expressed genes. Moreover, a significant and distinct impact on expression of genetic clusters of secondary metabolism became apparent, which could be verified on the product level. Unexpectedly, specific cross-regulation of the fumagillin/pseurotin supercluster was evident, thereby uncoupling its co-regulatory characteristic. These insights imply a tight interconnection of sexual development accompanied by ascosporogenesis with secondary metabolite production of a pathogenic fungus and impose evolutionary constraints that link these two fundamental aspects of the fungal lifestyle.


Assuntos
Aspergillus fumigatus , Cicloexanos , Ácidos Graxos Insaturados , Fator de Acasalamento , Pirrolidinonas , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Cicloexanos/metabolismo , Ácidos Graxos Insaturados/genética , Ácidos Graxos Insaturados/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento , Fator de Acasalamento/genética , Fator de Acasalamento/metabolismo , Família Multigênica , Pirrolidinonas/metabolismo , Metabolismo Secundário/genética , Sesquiterpenos/metabolismo
10.
BMC Genet ; 19(1): 112, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30545291

RESUMO

BACKGROUND: Fungal fruiting bodies are complex three-dimensional structures that are formed to protect and disperse the sexual spores. Their morphogenesis requires the concerted action of numerous genes; however, at the molecular level, the spatio-temporal sequence of events leading to the mature fruiting body is largely unknown. In previous studies, the transcription factor gene pro44 and the histone chaperone gene asf1 were shown to be essential for fruiting body formation in the ascomycete Sordaria macrospora. Both PRO44 and ASF1 are predicted to act on the regulation of gene expression in the nucleus, and mutants in both genes are blocked at the same stage of development. Thus, we hypothesized that PRO44 and ASF1 might be involved in similar aspects of transcriptional regulation. In this study, we characterized their roles in fruiting body development in more detail. RESULTS: The PRO44 protein forms homodimers, localizes to the nucleus, and is strongly expressed in the outer layers of the developing young fruiting body. Analysis of single and double mutants of asf1 and three other chromatin modifier genes, cac2, crc1, and rtt106, showed that only asf1 is essential for fruiting body formation whereas cac2 and rtt106 might have redundant functions in this process. RNA-seq analysis revealed distinct roles for asf1 and pro44 in sexual development, with asf1 acting as a suppressor of weakly expressed genes during morphogenesis. This is most likely not due to global mislocalization of nucleosomes as micrococcal nuclease-sequencing did not reveal differences in nucleosome spacing and positioning around transcriptional start sites between Δasf1 and the wild type. However, bisulfite sequencing revealed a decrease in DNA methylation in Δasf1, which might be a reason for the observed changes in gene expression. Transcriptome analysis of gene expression in young fruiting bodies showed that pro44 is required for correct expression of genes involved in extracellular metabolism. Deletion of the putative transcription factor gene asm2, which is downregulated in young fruiting bodies of Δpro44, results in defects during ascospore maturation. CONCLUSIONS: In summary, the results indicate distinct roles for the transcription factor PRO44 and the histone chaperone ASF1 in the regulation of sexual development in fungi.


Assuntos
Proteínas Fúngicas/genética , Chaperonas Moleculares/genética , Sordariales/genética , Fatores de Transcrição/genética , Núcleo Celular/metabolismo , Dimerização , Carpóforos/genética , Carpóforos/crescimento & desenvolvimento , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Chaperonas Moleculares/metabolismo , Mutagênese , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/metabolismo , Análise de Sequência de RNA , Sordariales/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
11.
Mol Genet Genomics ; 292(1): 93-104, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27770259

RESUMO

During the sexual life cycle of filamentous fungi, multicellular fruiting bodies are generated for the dispersal of spores. The filamentous ascomycete Sordaria macrospora has a long history as a model system for studying fruiting body formation, and two collections of sterile mutants have been generated. However, for most of these mutants, the underlying genetic defect remains unknown. Here, we investigated the mutant spadix (spd) that was generated by X-ray mutagenesis in the 1950s and terminates sexual development after the formation of pre-fruiting bodies (protoperithecia). We sequenced the spd genome and found a 22 kb deletion affecting four genes, which we termed spd1-4. Generation of deletion strains revealed that only spd4 is required for fruiting body formation. Although sterility in S. macrospora is often coupled with a vegetative hyphal fusion defect, Δspd4 was still capable of fusion. This feature distinguishes SPD4 from many other regulators of sexual development. Remarkably, GFP-tagged SPD4 accumulated in the nuclei of vegetative hyphae and fruiting body initials, the ascogonial coils, but not in sterile tissue from the developing protoperithecium. Our results point to SPD4 as a specific determinant of fruiting body formation. Research on SPD4 will, therefore, contribute to understanding cellular reprogramming during initiation of sexual development in fungi.


Assuntos
Carpóforos , Proteínas Fúngicas/genética , Sordariales/citologia , Núcleo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Hifas/metabolismo , Mutagênese , Sordariales/genética , Sordariales/crescimento & desenvolvimento , Sordariales/metabolismo
12.
PLoS Genet ; 10(8): e1004496, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25121733

RESUMO

Lichtheimia species are the second most important cause of mucormycosis in Europe. To provide broader insights into the molecular basis of the pathogenicity-associated traits of the basal Mucorales, we report the full genome sequence of L. corymbifera and compared it to the genome of Rhizopus oryzae, the most common cause of mucormycosis worldwide. The genome assembly encompasses 33.6 MB and 12,379 protein-coding genes. This study reveals four major differences of the L. corymbifera genome to R. oryzae: (i) the presence of an highly elevated number of gene duplications which are unlike R. oryzae not due to whole genome duplication (WGD), (ii) despite the relatively high incidence of introns, alternative splicing (AS) is not frequently observed for the generation of paralogs and in response to stress, (iii) the content of repetitive elements is strikingly low (<5%), (iv) L. corymbifera is typically haploid. Novel virulence factors were identified which may be involved in the regulation of the adaptation to iron-limitation, e.g. LCor01340.1 encoding a putative siderophore transporter and LCor00410.1 involved in the siderophore metabolism. Genes encoding the transcription factors LCor08192.1 and LCor01236.1, which are similar to GATA type regulators and to calcineurin regulated CRZ1, respectively, indicating an involvement of the calcineurin pathway in the adaption to iron limitation. Genes encoding MADS-box transcription factors are elevated up to 11 copies compared to the 1-4 copies usually found in other fungi. More findings are: (i) lower content of tRNAs, but unique codons in L. corymbifera, (ii) Over 25% of the proteins are apparently specific for L. corymbifera. (iii) L. corymbifera contains only 2/3 of the proteases (known to be essential virulence factors) in comparison to R. oryzae. On the other hand, the number of secreted proteases, however, is roughly twice as high as in R. oryzae.


Assuntos
Evolução Molecular , Genoma Fúngico , Mucorales/genética , Mucormicose/genética , Processamento Alternativo/genética , Duplicação Gênica , Genômica , Humanos , Mucorales/patogenicidade , Mucormicose/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/isolamento & purificação
13.
PLoS Genet ; 9(9): e1003820, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24068976

RESUMO

Fungi are a large group of eukaryotes found in nearly all ecosystems. More than 250 fungal genomes have already been sequenced, greatly improving our understanding of fungal evolution, physiology, and development. However, for the Pezizomycetes, an early-diverging lineage of filamentous ascomycetes, there is so far only one genome available, namely that of the black truffle, Tuber melanosporum, a mycorrhizal species with unusual subterranean fruiting bodies. To help close the sequence gap among basal filamentous ascomycetes, and to allow conclusions about the evolution of fungal development, we sequenced the genome and assayed transcriptomes during development of Pyronema confluens, a saprobic Pezizomycete with a typical apothecium as fruiting body. With a size of 50 Mb and ~13,400 protein-coding genes, the genome is more characteristic of higher filamentous ascomycetes than the large, repeat-rich truffle genome; however, some typical features are different in the P. confluens lineage, e.g. the genomic environment of the mating type genes that is conserved in higher filamentous ascomycetes, but only partly conserved in P. confluens. On the other hand, P. confluens has a full complement of fungal photoreceptors, and expression studies indicate that light perception might be similar to distantly related ascomycetes and, thus, represent a basic feature of filamentous ascomycetes. Analysis of spliced RNA-seq sequence reads allowed the detection of natural antisense transcripts for 281 genes. The P. confluens genome contains an unusually high number of predicted orphan genes, many of which are upregulated during sexual development, consistent with the idea of rapid evolution of sex-associated genes. Comparative transcriptomics identified the transcription factor gene pro44 that is upregulated during development in P. confluens and the Sordariomycete Sordaria macrospora. The P. confluens pro44 gene (PCON_06721) was used to complement the S. macrospora pro44 deletion mutant, showing functional conservation of this developmental regulator.


Assuntos
Ascomicetos/genética , Evolução Molecular , Análise de Sequência de DNA , Sordariales/genética , Transcriptoma/genética , Carpóforos/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento/genética , Genoma Fúngico , Splicing de RNA/genética , Deleção de Sequência/genética
14.
J Basic Microbiol ; 55(4): 480-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25557366

RESUMO

The fungal velvet complex is a light-dependent master regulator of secondary metabolism and development in the major penicillin producer, Penicillium chrysogenum. However, the light-dependent mechanism is unclear. To identify velvet-dependent transcriptional regulators that show light-regulated expression, we performed microarray hybridizations with RNA isolated from P. chrysogenum ΔPcku70 cultures grown under 13 different long-term, light-dependent growth conditions. We compared these expression data to data from two velvet complex deletion mutants; one lacked a subunit of the velvet complex (ΔPcvelA), and the other lacked a velvet-associated protein (ΔPclaeA). We sought to identify genes that were up-regulated in light, but down-regulated in ΔPcvelA and ΔPclaeA. We identified 148 co-regulated genes that displayed this regulatory pattern. In silico analyses of the co-regulated genes identified six proteins with fungal-specific transcription factor domains. Among these, we selected the bZIP transcription factor, PcAtfA, for functional characterization in deletion and complementation strains. Our data clearly indicates that PcAtfA governs spore germination. This comparative analysis of different microarray hybridization data sets provided results that may be useful for identifying genes for future functional analyses.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Penicillium chrysogenum/genética , Esporos Fúngicos/crescimento & desenvolvimento , Simulação por Computador , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Luz , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Penicillium chrysogenum/fisiologia , Deleção de Sequência , Esporos Fúngicos/genética
15.
Fungal Genet Biol ; 68: 48-59, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24792494

RESUMO

Filamentous ascomycetes have long been known as producers of a variety of secondary metabolites, many of which have toxic effects on other organisms. However, the role of these metabolites in the biology of the fungi that produce them remains in most cases enigmatic. A major group of fungal secondary metabolites are polyketides. They are chemically diverse, but have in common that their chemical scaffolds are synthesized by polyketide synthases (PKSs). In a previous study, we analyzed development-dependent expression of pks genes in the filamentous ascomycete Sordaria macrospora. Here, we show that a deletion mutant of the pks4 gene is sterile, producing only protoperithecia but no mature perithecia, whereas overexpression of pks4 leads to enlarged, malformed fruiting bodies. Thus, correct expression levels of pks4 are essential for wild type-like perithecia formation. The predicted PKS4 protein has a domain structure that is similar to homologs in other fungi, but conserved residues of a methyl transferase domain present in other fungi are mutated in PKS4. Expression of several developmental genes is misregulated in the pks4 mutant. Surprisingly, the development-associated app gene is not downregulated in the mutant, in contrast to all other previously studied mutants with a block at the protoperithecial stage. Our data show that the polyketide synthase gene pks4 is essential for sexual development and plays a role in regulating fruiting body morphology.


Assuntos
Carpóforos/fisiologia , Proteínas Fúngicas/metabolismo , Policetídeo Sintases/metabolismo , Sordariales/fisiologia , Sequência de Bases , Carpóforos/genética , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Mutação , Policetídeo Sintases/genética , Sordariales/genética
16.
mBio ; 15(1): e0289623, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38112417

RESUMO

IMPORTANCE: Histone chaperones are proteins that are involved in nucleosome assembly and disassembly and can therefore influence all DNA-dependent processes including transcription, DNA replication, and repair. ASF1 is a histone chaperone that is conserved throughout eukaryotes. In contrast to most other multicellular organisms, a deletion mutant of asf1 in the fungus Sordaria macrospora is viable; however, the mutant is sterile. In this study, we could show that the histone-binding ability of ASF1 is required for fertility in S. macrospora, whereas the function of ASF1 in maintenance of genome stability does not require histone binding. We also showed that the histone modifications H3K27me3 and H3K56ac are misregulated in the Δasf1 mutant. Furthermore, we identified a large duplication on chromosome 2 of the mutant strain that is genetically linked to the Δasf1 allele present on chromosome 6, suggesting that viability of the mutant might depend on the presence of the duplicated region.


Assuntos
Histonas , Sordariales , Histonas/genética , Histonas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Chaperonas de Histonas/genética , Sordariales/genética , Sordariales/metabolismo , Instabilidade Genômica , Proteínas de Ciclo Celular/genética
17.
G3 (Bethesda) ; 14(3)2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38261383

RESUMO

We performed a functional analysis of two potential partners of ASF1, a highly conserved histone chaperone that plays a crucial role in the sexual development and DNA damage resistance in the ascomycete Sordaria macrospora. ASF1 is known to be involved in nucleosome assembly and disassembly, binding histones H3 and H4 during transcription, replication and DNA repair and has direct and indirect roles in histone recycling and modification as well as DNA methylation, acting as a chromatin modifier hub for a large network of chromatin-associated proteins. Here, we functionally characterized two of these proteins, RTT109 and CHK2. RTT109 is a fungal-specific histone acetyltransferase, while CHK2 is an ortholog to PRD-4, a checkpoint kinase of Neurospora crassa that performs similar cell cycle checkpoint functions as yeast RAD53. Through the generation and characterization of deletion mutants, we discovered striking similarities between RTT109 and ASF1 in terms of their contributions to sexual development, histone acetylation, and protection against DNA damage. Phenotypic observations revealed a developmental arrest at the same stage in Δrtt109 and Δasf1 strains, accompanied by a loss of H3K56 acetylation, as detected by western blot analysis. Deletion mutants of rtt109 and asf1 are sensitive to the DNA damaging agent methyl methanesulfonate, but not hydroxyurea. In contrast, chk2 mutants are fertile and resistant to methyl methanesulfonate, but not hydroxyurea. Our findings suggest a close functional association between ASF1 and RTT109 in the context of development, histone modification, and DNA damage response, while indicating a role for CHK2 in separate pathways of the DNA damage response.


Assuntos
Histonas , Proteínas de Saccharomyces cerevisiae , Sordariales , Histonas/metabolismo , Metanossulfonato de Metila/farmacologia , Chaperonas Moleculares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Reparo do DNA , Dano ao DNA , Cromatina/genética , Cromatina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Histona Acetiltransferases/metabolismo , Acetilação
18.
Noncoding RNA ; 10(3)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38804363

RESUMO

Small RNAS (sRNAs) participate in regulatory RNA interference (RNAi) mechanisms in a wide range of eukaryotic organisms, including fungi. The fungus Fusarium fujikuroi, a model for the study of secondary metabolism, contains a complete set of genes for RNAi pathways. We have analyzed by high-throughput sequencing the content of sRNAs in total RNA samples of F. fujikuroi grown in synthetic medium in the dark or after 1 h of illumination, using libraries below 150 nt, covering sRNAs and their precursors. For comparison, a parallel analysis with Fusarium oxysporum was carried out. The sRNA reads showed a higher proportion of 5' uracil in the RNA samples of the expected sizes in both species, indicating the occurrence of genuine sRNAs, and putative miRNA-like sRNAs (milRNAS) were identified with prediction software. F. fujikuroi carries at least one transcriptionally expressed Ty1/copia-like retrotransposable element, in which sRNAs were found in both sense and antisense DNA strands, while in F. oxysporum skippy-like elements also show sRNA formation. The finding of sRNA in these mobile elements indicates an active sRNA-based RNAi pathway. Targeted deletion of dcl2, the only F. fujikuroi Dicer gene with significant expression under the conditions tested, did not produce appreciable phenotypic or transcriptomic alterations.

19.
bioRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38234769

RESUMO

A large-scale comparative genomic analysis was conducted for the global human fungal pathogens within the Cryptococcus genus, compared to non-pathogenic Cryptococcus species, and related species from the sister genus Kwoniella. Chromosome-level genome assemblies were generated for multiple species of both genera, resulting in a dataset encompassing virtually all of their known diversity. Although Cryptococcus and Kwoniella have comparable genome sizes (about 19.2 and 22.9 Mb) and similar gene content, hinting at pre-adaptive pathogenic potential, our analysis found evidence in pathogenic Cryptococcus species of specific examples of gene gain (via horizontal gene transfer) and gene loss, which might represent evolutionary signatures of pathogenic development. Genome analysis also revealed a significant variation in chromosome number and structure between the two genera. By combining synteny analysis and experimental centromere validation, we found that most Cryptococcus species have 14 chromosomes, whereas most Kwoniella species have fewer (11, 8, 5 or even as few as 3). Reduced chromosome number in Kwoniella is associated with formation of giant chromosomes (up to 18 Mb) through repeated chromosome fusion events, each marked by a pericentric inversion and centromere loss. While similar chromosome inversion-fusion patterns were observed in all Kwoniella species with fewer than 14 chromosomes, no such pattern was detected in Cryptococcus. Instead, Cryptococcus species with less than 14 chromosomes, underwent chromosome reductions primarily through rearrangements associated with the loss of repeat-rich centromeres. Additionally, Cryptococcus genomes exhibited frequent interchromosomal translocations, including intercentromeric recombination facilitated by transposons shared between centromeres. Taken together, our findings advance our understanding of genomic changes possibly associated with pathogenicity in Cryptococcus and provide a foundation to elucidate mechanisms of centromere loss and chromosome fusion driving distinct karyotypes in closely related fungal species, including prominent global human pathogens.

20.
Mol Microbiol ; 84(4): 748-65, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22463819

RESUMO

Ascomycetes develop four major types of fruiting bodies that share a common ancestor, and a set of common core genes most likely controls this process. One way to identify such genes is to search for conserved expression patterns. We analysed microarray data of Fusarium graminearum and Sordaria macrospora, identifying 78 genes with similar expression patterns during fruiting body development. One of these genes was asf1 (anti-silencing function 1), encoding a predicted histone chaperone. asf1 expression is also upregulated during development in the distantly related ascomycete Pyronema confluens. To test whether asf1 plays a role in fungal development, we generated an S. macrospora asf1 deletion mutant. The mutant is sterile and can be complemented to fertility by transformation with the wild-type asf1 and its P. confluens homologue. An ASF1-EGFP fusion protein localizes to the nucleus. By tandem-affinity purification/mass spectrometry as well as yeast two-hybrid analysis, we identified histones H3 and H4 as ASF1 interaction partners. Several developmental genes are dependent on asf1 for correct transcriptional expression. Deletion of the histone chaperone genes rtt106 and cac2 did not cause any developmental phenotypes. These data indicate that asf1 of S. macrospora encodes a conserved histone chaperone that is required for fruiting body development.


Assuntos
Proteínas Fúngicas/metabolismo , Genes Essenciais , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Sordariales/crescimento & desenvolvimento , Núcleo Celular/química , DNA Fúngico/química , DNA Fúngico/genética , Proteínas Fúngicas/genética , Deleção de Genes , Genes Fúngicos , Teste de Complementação Genética , Espectrometria de Massas , Análise em Microsséries , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Mapeamento de Interação de Proteínas , Análise de Sequência de DNA , Sordariales/genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA