Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38564365

RESUMO

RATIONALE: Observational studies suggest that high-dose isoniazid may be efficacious in treating multidrug-resistant tuberculosis (MDR-TB). However, its activity against Mycobacterium tuberculosis (M.tb) with katG mutations (which typically confer high-level resistance) is not established. OBJECTIVE: To characterize early bactericidal activity (EBA) of high-dose isoniazid in patients with tuberculosis caused by katG-mutated M.tb. METHODS: A5312 was a Phase 2A randomized, open-label trial. Participants with tuberculosis caused by katG-mutated M.tb were randomized to receive 15 or 20 mg/kg isoniazid daily for 7 days. Daily sputum samples were collected for quantitative culture. Intensive PK sampling was performed on day 6. Data were pooled across all A5312 participants for analysis (drug-sensitive, inhA-mutated, and katG-mutated M.tb). EBA was determined using nonlinear mixed-effects modelling. RESULTS: Of 80 treated participants, 21 had katG-mutated M.tb. Isoniazid PK was best described by a two-compartment model with an effect of NAT2 acetylator phenotype on clearance. Model-derived Cmax and AUC in the 15 and 20 mg/kg groups were 15.0 and 22.1 mg/L and 57.6 and 76.8 mg∙h/L, respectively. Isoniazid bacterial kill was described using an effect compartment and a sigmoidal Emax relationship. Isoniazid potency against katG-mutated M.tb was approximately 10-fold lower than against inhA-mutated M.tb. The highest dose (20 mg/kg) did not demonstrate measurable EBA, except in a subset of slow NAT2 acetylators (who experienced the highest concentrations). There were no grade 3 or higher drug-related adverse events. CONCLUSIONS: This study found negligible bactericidal activity of high-dose isoniazid (15-20 mg/kg) in the majority of participants with tuberculosis caused by katG-mutated M.tb. Clinical trial registration available at www. CLINICALTRIALS: gov, ID: NCT01936831.

2.
Antimicrob Agents Chemother ; 68(4): e0156223, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38376228

RESUMO

The combination of bedaquiline, pretomanid, and linezolid (BPaL) has become a preferred regimen for treating multidrug- and extensively drug-resistant tuberculosis (TB). However, treatment-limiting toxicities of linezolid and reports of emerging bedaquiline and pretomanid resistance necessitate efforts to develop new short-course oral regimens. We recently found that the addition of GSK2556286 increases the bactericidal and sterilizing activity of BPa-containing regimens in a well-established BALB/c mouse model of tuberculosis. Here, we used this model to evaluate the potential of new regimens combining bedaquiline or the more potent diarylquinoline TBAJ-587 with GSK2556286 and the DprE1 inhibitor TBA-7371, all of which are currently in early-phase clinical trials. We found the combination of bedaquiline, GSK2556286, and TBA-7371 to be more active than the first-line regimen and nearly as effective as BPaL in terms of bactericidal and sterilizing activity. In addition, we found that GSK2556286 and TBA-7371 were as effective as pretomanid and the novel oxazolidinone TBI-223 when either drug pair was combined with TBAJ-587 and that the addition of GSK2556286 increased the bactericidal activity of the TBAJ-587, pretomanid, and TBI-223 combination. We conclude that GSK2556286 and TBA-7371 have the potential to replace pretomanid, an oxazolidinone, or both components, in combination with bedaquiline or TBAJ-587.


Assuntos
Mycobacterium tuberculosis , Nitroimidazóis , Oxazolidinonas , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Camundongos , Diarilquinolinas/farmacologia , Diarilquinolinas/uso terapêutico , Antituberculosos/uso terapêutico , Antituberculosos/farmacologia , Linezolida/farmacologia , Linezolida/uso terapêutico , Tuberculose/tratamento farmacológico , Nitroimidazóis/farmacologia , Oxazolidinonas/farmacologia , Oxazolidinonas/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
3.
Antimicrob Agents Chemother ; 67(12): e0078923, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37966090

RESUMO

Contezolid is a new oxazolidinone with in vitro and in vivo activity against Mycobacterium tuberculosis comparable to that of linezolid. Pre-clinical and clinical safety studies suggest it may be less toxic than linezolid, making contezolid a potential candidate to replace linezolid in the treatment of drug-resistant tuberculosis. We evaluated the dose-ranging activity of contezolid, alone and in combination with bedaquiline and pretomanid, and compared it with linezolid at similar doses, in an established BALB/c mouse model of tuberculosis. Contezolid had an MIC of 1 µg/mL, similar to linezolid, and exhibited similar bactericidal activity in mice. Contezolid-resistant mutants selected in vitro had 32- to 64-fold increases in contezolid MIC and harbored mutations in the mce3R gene. These mutants did not display cross-resistance to linezolid. Our results indicate that contezolid has the potential to replace linezolid in regimens containing bedaquiline and pretomanid and likely other regimens.


Assuntos
Mycobacterium tuberculosis , Oxazolidinonas , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Camundongos , Linezolida/farmacologia , Linezolida/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Modelos Animais de Doenças , Oxazolidinonas/farmacologia , Oxazolidinonas/uso terapêutico , Diarilquinolinas/farmacologia , Diarilquinolinas/uso terapêutico , Tuberculose/tratamento farmacológico , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
4.
Antimicrob Agents Chemother ; 67(7): e0048123, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37338374

RESUMO

Administration of tuberculosis preventive therapy (TPT) to individuals with latent tuberculosis infection is an important facet of global tuberculosis control. The use of long-acting injectable (LAI) drug formulations may simplify and shorten regimens for this indication. Rifapentine and rifabutin have antituberculosis activity and physiochemical properties suitable for LAI formulation, but there are limited data available for determining the target exposure profiles required for efficacy in TPT regimens. The objective of this study was to determine exposure-activity profiles of rifapentine and rifabutin to inform development of LAI formulations for TPT. We used a validated paucibacillary mouse model of TPT in combination with dynamic oral dosing of both drugs to simulate and understand exposure-activity relationships to inform posology for future LAI formulations. This work identified several LAI-like exposure profiles of rifapentine and rifabutin that, if achieved by LAI formulations, could be efficacious as TPT regimens and thus can serve as experimentally determined targets for novel LAI formulations of these drugs. We present novel methodology to understand the exposure-response relationship and inform the value proposition for investment in development of LAI formulations that have utility beyond latent tuberculosis infection.


Assuntos
Tuberculose Latente , Rifabutina , Animais , Camundongos , Rifabutina/uso terapêutico , Antituberculosos/uso terapêutico , Tuberculose Latente/tratamento farmacológico , Tuberculose Latente/prevenção & controle , Rifampina/uso terapêutico
5.
Antimicrob Agents Chemother ; 67(4): e0003523, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36920217

RESUMO

A regimen comprised of bedaquiline (BDQ, or B), pretomanid, and linezolid (BPaL) is the first oral 6-month regimen approved by the U.S. Food and Drug Administration and recommended by the World Health Organization for the treatment of extensively drug-resistant tuberculosis. We used a well-established BALB/c mouse model of tuberculosis to evaluate the treatment-shortening potential of replacing bedaquiline with either of two new, more potent diarylquinolines, TBAJ-587 and TBAJ-876, in early clinical trials. We also evaluated the effect of replacing linezolid with a new oxazolidinone, TBI-223, exhibiting a larger safety margin with respect to mitochondrial toxicity in preclinical studies. Replacing bedaquiline with TBAJ-587 at the same 25-mg/kg dose significantly reduced the proportion of mice relapsing after 2 months of treatment, while replacing linezolid with TBI-223 at the same 100-mg/kg dose did not significantly change the proportion of mice relapsing. Replacing linezolid or TBI-223 with sutezolid in combination with TBAJ-587 and pretomanid significantly reduced the proportion of mice relapsing. In combination with pretomanid and TBI-223, TBAJ-876 at 6.25 mg/kg was equipotent to TBAJ-587 at 25 mg/kg. We conclude that replacement of bedaquiline with these more efficacious and potentially safer diarylquinolines and replacement of linezolid with potentially safer and at least as efficacious oxazolidinones in the clinically successful BPaL regimen may lead to superior regimens capable of treating both drug-susceptible and drug-resistant TB more effectively and safely.


Assuntos
Nitroimidazóis , Oxazolidinonas , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Camundongos , Diarilquinolinas/farmacologia , Diarilquinolinas/uso terapêutico , Antituberculosos/uso terapêutico , Linezolida/uso terapêutico , Tuberculose/tratamento farmacológico , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Oxazolidinonas/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
6.
Am J Respir Crit Care Med ; 205(10): 1228-1235, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35258443

RESUMO

Rationale: Carbapenems are recommended for treatment of drug-resistant tuberculosis. Optimal dosing remains uncertain. Objectives: To evaluate the 14-day bactericidal activity of meropenem, at different doses, with or without rifampin. Methods: Individuals with drug-sensitive pulmonary tuberculosis were randomized to one of four intravenous meropenem-based arms: 2 g every 8 hours (TID) (arm C), 2 g TID plus rifampin at 20 mg/kg once daily (arm D), 1 g TID (arm E), or 3 g once daily (arm F). All participants received amoxicillin/clavulanate with each meropenem dose. Serial overnight sputum samples were collected from baseline and throughout treatment. Median daily fall in colony-forming unit (CFU) counts per milliliter of sputum (solid culture) (EBACFU0-14) and increase in time to positive culture (TTP) in liquid media were estimated with mixed-effects modeling. Serial blood samples were collected for pharmacokinetic analysis on Day 13. Measurements and Main Results: Sixty participants enrolled. Median EBACFU0-14 counts (2.5th-97.5th percentiles) were 0.22 (0.12-0.33), 0.12 (0.057-0.21), 0.059 (0.033-0.097), and 0.053 (0.035-0.081); TTP increased by 0.34 (0.21-0.75), 0.11 (0.052-0.37), 0.094 (0.034-0.23), and 0.12 (0.04-0.41) (log10 h), for arms C-F, respectively. Meropenem pharmacokinetics were not affected by rifampin coadministration. Twelve participants withdrew early, many of whom cited gastrointestinal adverse events. Conclusions: Bactericidal activity was greater with the World Health Organization-recommended total daily dose of 6 g daily than with a lower dose of 3 g daily. This difference was only detectable with solid culture. Tolerability of intravenous meropenem, with amoxicillin/clavulanate, though, was poor at all doses, calling into question the utility of this drug in second-line regimens. Clinical trial registered with www.clinicaltrials.gov (NCT03174184).


Assuntos
Rifampina , Tuberculose Pulmonar , Amoxicilina/uso terapêutico , Antituberculosos/uso terapêutico , Ácido Clavulânico/uso terapêutico , Quimioterapia Combinada , Humanos , Isoniazida , Meropeném/uso terapêutico , Rifampina/uso terapêutico , Tuberculose Pulmonar/tratamento farmacológico
7.
Clin Infect Dis ; 75(Suppl 4): S510-S516, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36410384

RESUMO

A key component of global tuberculosis (TB) control is the treatment of latent TB infection. The use of long-acting technologies to administer TB preventive treatment has the potential to significantly improve the delivery and impact of this important public health intervention. For example, an ideal long-acting treatment could consist of a single dose that could be administered in the clinic (ie, a "1-shot cure" for latent TB). Interest in long-acting formulations for TB preventive therapy has gained considerable traction in recent years. This article presents an overview of the specific considerations and current preclinical advancements relevant for the development of long-acting technologies of TB drugs for treatment of latent infection, including attributes of target product profiles, suitability of drugs for long-acting formulations, ongoing research efforts, and translation to clinical studies.


Assuntos
Tuberculose Latente , Tuberculose , Humanos , Tuberculose Latente/tratamento farmacológico , Tuberculose Latente/prevenção & controle , Tuberculose/tratamento farmacológico , Tuberculose/prevenção & controle , Antibioticoprofilaxia , Instituições de Assistência Ambulatorial , Saúde Pública
8.
Antimicrob Agents Chemother ; 66(4): e0009322, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35311518

RESUMO

We utilized a CRISPR interference (CRISPRi) assay to control the gene expressions of two predicted essential peptidoglycan biosynthesis genes, pbpB and cwIM, in Mycobacterium abscessus and to evaluate their contribution to ß-lactam susceptibility. Our results showed that CRISPR inhibition of each gene led to a significant 3-log10 reduction in CFU in the presence of imipenem but not for cefoxitin. These results demonstrate that CRISPRi provides an experimental approach to study drug/target interactions in M. abscessus.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Antibacterianos/farmacologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/genética , Peptidoglicano/genética , beta-Lactamas/farmacologia
9.
Antimicrob Agents Chemother ; 66(6): e0053622, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35638855

RESUMO

Mycobacteroides abscessus (Mab) is an emerging environmental microbe that causes chronic lung disease in patients with compromised lung function such as cystic fibrosis and bronchiectasis. It is intrinsically resistant to most antibiotics, therefore there are only few antibiotics that can be repurposed to treat Mab disease. Although current recommendations require daily intake of multiple antibiotics for more than a year, cure rate is low and often associated with significant adverse events. Here, we describe in vivo efficacy of T405, a recently discovered ß-lactam antibiotic of the penem subclass, in a mouse model of pulmonary Mab infection. Imipenem, one of the standard-of-care drugs to treat Mab disease, and also a ß-lactam antibiotic from a chemical class similar to T405, was included as a comparator. Probenecid was included with both T405 and imipenem to reduce the rate of their renal clearance. T405 exhibited bactericidal activity against Mab from the onset of treatment and reduced Mab lung burden at a rate similar to that exhibited by imipenem. The MIC of T405 against Mab was unaltered after 4 weeks of exposure to T405 in the lungs of mice. Using an in vitro assay, we also demonstrate that T405 in combination with imipenem, cefditoren or avibactam exhibits synergism against Mab. Additionally, we describe a scheme for synthesis and purification of T405 on an industrial scale. These attributes make T405 a promising candidate for further preclinical assessment to treat Mab disease.


Assuntos
Imipenem , Infecções por Mycobacterium não Tuberculosas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefalosporinas , Humanos , Imipenem/farmacologia , Imipenem/uso terapêutico , Meropeném/uso terapêutico , Camundongos , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , beta-Lactamas/uso terapêutico
10.
Antimicrob Agents Chemother ; 66(4): e0239821, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35315690

RESUMO

A recent landmark trial showed a 4-month regimen of rifapentine, pyrazinamide, moxifloxacin, and isoniazid (PZMH) to be noninferior to the 6-month standard of care. Here, two murine models of tuberculosis were used to test whether novel regimens replacing rifapentine and isoniazid with bedaquiline and another drug would maintain or increase the sterilizing activity of the regimen. In BALB/c mice, replacing rifapentine in the PZM backbone with bedaquiline (i.e., BZM) significantly reduced both lung CFU counts after 1 month and the proportion of mice relapsing within 3 months after completing 1.5 months of treatment. The addition of rifabutin to BZM (BZMRb) further increased the sterilizing activity. In the C3HeB/FeJ mouse model characterized by caseating lung lesions, treatment with BZMRb resulted in significantly fewer relapses than PZMH after 2 months of treatment. A regimen combining the new DprE1 inhibitor OPC-167832 and delamanid (BZOD) also had superior bactericidal and sterilizing activity compared to PZM in BALB/c mice and was similar in efficacy to PZMH in C3HeB/FeJ mice. Thus, BZM represents a promising backbone for treatment-shortening regimens. Given the prohibitive drug-drug interactions between bedaquiline and rifampin or rifapentine, the BZMRb regimen represents the best opportunity to combine, in one regimen, the treatment-shortening potential of the rifamycin class with that of BZM and deserves high priority for evaluation in clinical trials. Other 4-drug BZM-based regimens and BZOD represent promising opportunities for extending the spectrum of treatment-shortening regimens to rifamycin- and fluoroquinolone-resistant tuberculosis.


Assuntos
Antibióticos Antituberculose , Mycobacterium tuberculosis , Tuberculose , Animais , Antibióticos Antituberculose/uso terapêutico , Antituberculosos/uso terapêutico , Diarilquinolinas , Modelos Animais de Doenças , Esquema de Medicação , Quimioterapia Combinada , Isoniazida/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Moxifloxacina/uso terapêutico , Nitroimidazóis , Oxazóis , Pirazinamida/farmacologia , Pirazinamida/uso terapêutico , Rifabutina/uso terapêutico , Tuberculose/tratamento farmacológico
11.
Antimicrob Agents Chemother ; 66(4): e0231021, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35311519

RESUMO

Murine tuberculosis drug efficacy studies have historically monitored bacterial burden based on CFU of Mycobacterium tuberculosis in lung homogenate. In an alternative approach, a recently described molecular pharmacodynamic marker called the RS ratio quantifies drug effect on a fundamental cellular process, ongoing rRNA synthesis. Here, we evaluated the ability of different pharmacodynamic markers to distinguish between treatments in three BALB/c mouse experiments at two institutions. We confirmed that different pharmacodynamic markers measure distinct biological responses. We found that a combination of pharmacodynamic markers distinguishes between treatments better than any single marker. The combination of the RS ratio with CFU showed the greatest ability to recapitulate the rank order of regimen treatment-shortening activity, providing proof of concept that simultaneous assessment of pharmacodynamic markers measuring different properties will enhance insight gained from animal models and accelerate development of new combination regimens. These results suggest potential for a new era in which antimicrobial therapies are evaluated not only on culture-based measures of bacterial burden but also on molecular assays that indicate how drugs impact the physiological state of the pathogen.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Modelos Animais de Doenças , Quimioterapia Combinada , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
12.
Antimicrob Agents Chemother ; 66(6): e0013222, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35607978

RESUMO

As a result of a high-throughput compound screening campaign using Mycobacterium tuberculosis-infected macrophages, a new drug candidate for the treatment of tuberculosis has been identified. GSK2556286 inhibits growth within human macrophages (50% inhibitory concentration [IC50] = 0.07 µM), is active against extracellular bacteria in cholesterol-containing culture medium, and exhibits no cross-resistance with known antitubercular drugs. In addition, it has shown efficacy in different mouse models of tuberculosis (TB) and has an adequate safety profile in two preclinical species. These features indicate a compound with a novel mode of action, although still not fully defined, that is effective against both multidrug-resistant (MDR) or extensively drug-resistant (XDR) and drug-sensitive (DS) M. tuberculosis with the potential to shorten the duration of treatment in novel combination drug regimens. (This study has been registered at ClinicalTrials.gov under identifier NCT04472897).


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Macrófagos , Camundongos , Testes de Sensibilidade Microbiana , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
13.
PLoS Pathog ; 16(2): e1008287, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32032366

RESUMO

Our inability to predict which mutations could result in antibiotic resistance has made it difficult to rapidly identify the emergence of resistance, identify pre-existing resistant populations, and manage our use of antibiotics to effectively treat patients and prevent or slow the spread of resistance. Here we investigated the potential for resistance against the new antitubercular nitroimidazole prodrugs pretomanid and delamanid to emerge in Mycobacterium tuberculosis, the causative agent of tuberculosis (TB). Deazaflavin-dependent nitroreductase (Ddn) is the only identified enzyme within M. tuberculosis that activates these prodrugs, via an F420H2-dependent reaction. We show that the native menaquinone-reductase activity of Ddn is essential for emergence from hypoxia, which suggests that for resistance to spread and pose a threat to human health, the native activity of Ddn must be at least partially retained. We tested 75 unique mutations, including all known sequence polymorphisms identified among ~15,000 sequenced M. tuberculosis genomes. Several mutations abolished pretomanid and delamanid activation in vitro, without causing complete loss of the native activity. We confirmed that a transmissible M. tuberculosis isolate from the hypervirulent Beijing family already possesses one such mutation and is resistant to pretomanid, before being exposed to the drug. Notably, delamanid was still effective against this strain, which is consistent with structural analysis that indicates delamanid and pretomanid bind to Ddn differently. We suggest that the mutations identified in this work be monitored for informed use of delamanid and pretomanid treatment and to slow the emergence of resistance.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias , Farmacorresistência Bacteriana , Mutação , Mycobacterium tuberculosis , Nitroimidazóis/farmacologia , Nitrorredutases , Oxazóis/farmacologia , Engenharia de Proteínas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Nitrorredutases/genética , Nitrorredutases/metabolismo , Polimorfismo Genético
14.
Am J Respir Crit Care Med ; 204(11): 1327-1335, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34403326

RESUMO

Rationale: There is accumulating evidence that higher-than-standard doses of isoniazid are effective against low-to-intermediate-level isoniazid-resistant strains of Mycobacterium tuberculosis, but the optimal dose remains unknown. Objectives: To characterize the association between isoniazid pharmacokinetics (standard or high dose) and early bactericidal activity against M. tuberculosis (drug sensitive and inhA mutated) and N-acetyltransferase 2 status. Methods: ACTG (AIDS Clinical Trial Group) A5312/INHindsight is a 7-day early bactericidal activity study with isoniazid at a normal dose (5 mg/kg) for patients with drug-sensitive bacteria and 5, 10, and 15 mg/kg doses for patients with inhA mutants. Participants with pulmonary tuberculosis received daily isoniazid monotherapy and collected sputum daily. Colony-forming units (cfu) on solid culture and time to positivity in liquid culture were jointly analyzed using nonlinear mixed-effects modeling. Measurements and Main Results: Fifty-nine adults were included in this analysis. A decline in sputum cfu was described by a one-compartment model, whereas an exponential bacterial growth model was used to interpret time-to-positivity data. The model found that bacterial kill is modulated by isoniazid concentration using an effect compartment and a sigmoidal Emax relationship (a model linking the drug concentration to the observed effect). The model predicted lower potency but similar maximum kill of isoniazid against inhA-mutated compared with drug-sensitive isolates. Based on simulations from the pharmacokinetics-pharmacodynamics model, to achieve a drop in bacterial load comparable to 5 mg/kg against drug-sensitive tuberculosis, 10- and 15-mg/kg doses are necessary against inhA-mutated isolates in slow and intermediate N-acetyltransferase 2 acetylators, respectively. Fast acetylators underperformed even at 15 mg/kg. Conclusions: Dosing of isoniazid based on N-acetyltransferase 2 acetylator status may help patients attain effective exposures against inhA-mutated isolates. Clinical trial registered with www.clinicaltrials.gov (NCT01936831).


Assuntos
Antituberculosos/administração & dosagem , Isoniazida/administração & dosagem , Escarro/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico , Adulto , Antituberculosos/farmacocinética , Arilamina N-Acetiltransferase , Proteínas de Bactérias , Contagem de Colônia Microbiana , Relação Dose-Resposta a Droga , Feminino , Humanos , Isoniazida/farmacocinética , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Oxirredutases , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/microbiologia , Adulto Jovem
15.
J Infect Dis ; 223(11): 1855-1864, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31993638

RESUMO

BACKGROUND: Linezolid (LZD) is bactericidal against Mycobacterium tuberculosis, but it has treatment-limiting toxicities. A better understanding of exposure-response relationships governing LZD efficacy and toxicity will inform dosing strategies. Because in vitro monotherapy studies yielded conflicting results, we explored LZD pharmacokinetic/pharmacodynamic (PK/PD) relationships in vivo against actively and nonactively multiplying bacteria, including in combination with pretomanid. METHODS: Linezolid multidose pharmacokinetics were modeled in mice. Dose-fractionation studies were performed in acute (net bacterial growth) and chronic (no net growth) infection models. In acute models, LZD was administered alone or with bacteriostatic or bactericidal pretomanid doses. Correlations between PK/PD parameters and lung colony-forming units (CFUs) and complete blood counts were assessed. RESULTS: Overall, time above minimum inhibitory concentration (T>MIC) correlated best with CFU decline. However, in growth-constrained models (ie, chronic infection, coadministration with pretomanid 50 mg/kg per day), area under the concentration-time curve over MIC (AUC/MIC) had similar explanatory power. Red blood cell counts correlated strongly with LZD minimum concentration (Cmin). CONCLUSIONS: Although T>MIC was the most consistent correlate of efficacy, AUC/MIC was equally predictive when bacterial multiplication was constrained by host immunity or pretomanid. In effective combination regimens, administering the same total LZD dose less frequently may be equally effective and cause less Cmin-dependent toxicity.


Assuntos
Antibacterianos , Linezolida , Infecção Persistente , Tuberculose , Animais , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Área Sob a Curva , Modelos Animais de Doenças , Linezolida/farmacologia , Linezolida/toxicidade , Camundongos , Testes de Sensibilidade Microbiana , Tuberculose/tratamento farmacológico
16.
Antimicrob Agents Chemother ; 65(11): e0141821, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34460302

RESUMO

Telacebec (Q203) is a new antituberculosis drug in clinical development that has extremely potent activity against Mycobacterium ulcerans, the causative agent of Buruli ulcer (BU). The potency of Q203 has prompted investigation of its potential role in ultrashort, even single-dose, treatment regimens for BU in mouse models. However, the relationships of Q203 dose, dose schedule, duration, and host immune status to treatment outcomes remain unclear, as does the risk of emergence of drug resistance with Q203 monotherapy. Here, we used mouse footpad infection models in immunocompetent BALB/c and immunocompromised SCID-beige mice to compare different Q203 doses, different dosing schedules, and treatment durations ranging from 1 day to 2 weeks, on long-term outcomes. We also tested whether combining Q203 with a second drug can increase efficacy. Overall, efficacy depended on total dose more than on duration. Total doses of 5 to 20 mg/kg rendered nearly all BALB/c mice culture negative by 13 to 14 weeks posttreatment, without selection of Q203-resistant bacteria. Addition of a second drug did not significantly increase efficacy. Although less potent in SCID-beige mice, Q203 still rendered the majority of footpads culture negative at total doses of 10 to 20 mg/kg. Q203 resistance was identified in relapse isolates from some SCID-beige mice receiving monotherapy but not in isolates from those receiving Q203 combined with bedaquiline or clofazimine. Overall, these results support the potential of Q203 monotherapy for single-dose or other ultrashort therapy for BU, although highly immunocompromised hosts may require higher doses or durations and/or combination therapy.


Assuntos
Úlcera de Buruli , Mycobacterium ulcerans , Animais , Úlcera de Buruli/tratamento farmacológico , Imidazóis , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Piperidinas , Piridinas
17.
Antimicrob Agents Chemother ; 65(12): e0141221, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34570644

RESUMO

Bedaquiline (BDQ, B) is the first-in-class diarylquinoline to be approved for treatment of tuberculosis (TB). Recent guidelines recommend its use in treatment of multidrug- and extensively drug-resistant tuberculosis (MDR/XDR-TB). The newly approved regimen combining BDQ with pretomanid and linezolid is the first 6-month oral regimen proven to be effective against MDR/XDR-TB. However, the emergence of BDQ resistance, primarily due to inactivating mutations in the Rv0678 gene encoding a repressor of the MmpS5-MmpL5 transporter, threatens to undermine the efficacy of new BDQ-containing regimens. Since the shift in MIC due to these mutations is relatively small (2-8×), safer, and more potent, diarylquinoline analogues may be more effective than BDQ. TBAJ-876, which is in phase 1 trials, has more potent in vitro activity and a superior pre-clinical safety profile than BDQ. Using a murine model of TB, we evaluated the dose-dependent activity of TBAJ-876 compared to BDQ against the wild-type H37Rv strain and an isogenic Rv0678 loss-of-function mutant. Although the mutation affected the MIC of both drugs, the MIC of TBAJ-876 against the mutant was 10-fold lower than that of BDQ. TBAJ-876 at doses ≥6.25 mg/kg had greater efficacy against both strains compared to BDQ at 25 mg/kg, when administered alone or in combination with pretomanid and linezolid. Likewise, no selective amplification of BDQ-resistant bacteria was observed at TBAJ-876 doses ≥6.25 mg/kg. These results indicate that replacing BDQ with TBAJ-876 may shorten the duration of TB treatment and be more effective in treating and preventing infections caused by Rv0678 mutants.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Diarilquinolinas , Modelos Animais de Doenças , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Camundongos , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
18.
Antimicrob Agents Chemother ; 65(12): e0154521, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34516254

RESUMO

Mycobacterium abscessus lung disease is difficult to treat due to intrinsic drug resistance and the persistence of drug-tolerant bacteria. Currently, the standard of care is a multidrug regimen with at least 3 active drugs, preferably including a ß-lactam (imipenem or cefoxitin). These regimens are lengthy and toxic and have limited efficacy. The search for more efficacious regimens led us to evaluate bedaquiline, a diarylquinoline licensed for treatment of multidrug-resistant tuberculosis. We performed in vitro time-kill experiments to evaluate the activity of bedaquiline alone and in combination with the first-line drug imipenem against M. abscessus under various conditions. Against actively growing bacteria, bedaquiline was largely bacteriostatic and antagonized the bactericidal activity of imipenem. Contrarily, against nutrient-starved persisters, bedaquiline was bactericidal, while imipenem was not, and bedaquiline drove the activity of the combination. In an intracellular infection model, bedaquiline and imipenem had additive bactericidal effects. Correlations between ATP levels and the bactericidal activity of imipenem and its antagonism by bedaquiline were observed. Interestingly, the presence of Tween 80 in the media affected the activity of both drugs, enhancing the activity of imipenem and reducing that of bedaquiline. Overall, these results show that bedaquiline and imipenem interact differently depending on culture conditions. Previously reported antagonistic effects of bedaquiline on imipenem were limited to conditions with actively multiplying bacteria and/or the presence of Tween 80, whereas the combination was additive or indifferent against nutrient-starved and intracellular M. abscessus, where promising bactericidal activity of the combination suggests it may have a role in future treatment regimens.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Antibacterianos/farmacologia , Diarilquinolinas/farmacologia , Humanos , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Nutrientes
19.
Artigo em Inglês | MEDLINE | ID: mdl-33526488

RESUMO

Since its conditional approval in 2012, bedaquiline (BDQ) has been a valuable tool for treatment of drug-resistant tuberculosis. More recently, a novel short-course regimen combining BDQ with pretomanid and linezolid won approval to treat highly drug-resistant tuberculosis. Clinical reports of emerging BDQ resistance have identified mutations in Rv0678 that derepress the expression of the MmpL5/MmpS5 efflux transporter as the most common cause. Because the effect of these mutations on bacterial susceptibility to BDQ is relatively small (e.g., 2 to 8× MIC shift), increasing the BDQ dose would increase antibacterial activity but also pose potential safety concerns, including QTc prolongation. Substitution of BDQ with another diarylquinoline with superior potency and/or safety has the potential to overcome these limitations. TBAJ-587 has greater in vitro potency than BDQ, including against Rv0678 mutants, and may offer a larger safety margin. Using a mouse model of tuberculosis and different doses of BDQ and TBAJ-587, we found that against wild-type M. tuberculosis H37Rv and an isogenic Rv0678 mutant, TBAJ-587 has greater efficacy against both strains than BDQ, whether alone or in combination with pretomanid and either linezolid or moxifloxacin and pyrazinamide. TBAJ-587 also reduced the emergence of resistance to diarylquinolines and pretomanid.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Diarilquinolinas/farmacologia , Humanos , Mycobacterium tuberculosis/genética , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
20.
Am J Respir Crit Care Med ; 201(11): 1416-1424, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31945300

RESUMO

Rationale: High-dose isoniazid is recommended in short-course regimens for multidrug-resistant tuberculosis (TB). The optimal dose of isoniazid and its individual contribution to efficacy against TB strains with inhA or katG mutations are unknown.Objectives: To define the optimal dose of isoniazid for patients with isoniazid-resistant TB mediated by inhA mutations.Methods: AIDS Clinical Trials Group A5312 is a phase 2A, open-label trial in which individuals with smear-positive pulmonary TB with isoniazid resistance mediated by an inhA mutation were randomized to receive isoniazid 5, 10, or 15 mg/kg daily for 7 days (inhA group), and control subjects with drug-sensitive TB received the standard dose (5 mg/kg/d). Overnight sputum cultures were collected daily. The 7-day early bactericidal activity (EBA) of isoniazid was estimated as the average daily change in log10 cfu on solid media (EBAcfu0-7) or as time to positivity (TTP) in liquid media in hours (EBATTP0-7) using nonlinear mixed-effects models.Measurements and Main Results: Fifty-nine participants (88% with cavitary disease, 20% HIV-positive, 16 with isoniazid-sensitive TB, and 43 with isoniazid-monoresistant or multidrug-resistant TB) were enrolled at one site in South Africa. The mean EBAcfu0-7 at doses of 5, 10, and 15 mg/kg in the inhA group was 0.07, 0.17, and 0.22 log10 cfu/ml/d, respectively, and 0.16 log10 cfu/ml/d in control subjects. EBATTP0-7 patterns were similar. There were no drug-related grade ≥3 adverse events.Conclusions: Isoniazid 10-15 mg/kg daily had activity against TB strains with inhA mutations similar to that of 5 mg/kg against drug-sensitive strains. The activity of high-dose isoniazid against strains with katG mutations will be explored next.Clinical trial registered with www.clinicaltrials.gov (NCT01936831).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA