Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 24(4): 1077-91, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25305083

RESUMO

A central pathological hallmark of Parkinson's disease (PD) is the presence of proteinaceous depositions known as Lewy bodies, which consist largely of the protein α-synuclein (aSyn). Mutations, multiplications and polymorphisms in the gene encoding aSyn are associated with familial forms of PD and susceptibility to idiopathic PD. Alterations in aSyn impair neuronal vesicle formation/transport, and likely contribute to PD pathogenesis by neuronal dysfunction and degeneration. aSyn is functionally associated with several Rab family GTPases, which perform various roles in vesicle trafficking. Here, we explore the role of the endosomal recycling factor Rab11 in the pathogenesis of PD using Drosophila models of aSyn toxicity. We find that aSyn induces synaptic potentiation at the larval neuromuscular junction by increasing synaptic vesicle (SV) size, and that these alterations are reversed by Rab11 overexpression. Furthermore, Rab11 decreases aSyn aggregation and ameliorates several aSyn-dependent phenotypes in both larvae and adult fruit flies, including locomotor activity, degeneration of dopaminergic neurons and shortened lifespan. This work emphasizes the importance of Rab11 in the modulation of SV size and consequent enhancement of synaptic function. Our results suggest that targeting Rab11 activity could have a therapeutic value in PD.


Assuntos
Transmissão Sináptica , alfa-Sinucleína/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Comportamento Animal , Encéfalo/metabolismo , Encéfalo/patologia , Neurônios Dopaminérgicos/metabolismo , Drosophila , Feminino , Expressão Gênica , Modelos Biológicos , Junção Neuromuscular/metabolismo , Doença de Parkinson/metabolismo , Fenótipo , Transporte Proteico , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura , alfa-Sinucleína/genética
2.
Hum Mol Genet ; 23(17): 4581-96, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24722203

RESUMO

The cellular prion protein (PrP(C)) has been implicated in several neurodegenerative diseases as a result of protein misfolding. In humans, prion disease occurs typically with a sporadic origin where uncharacterized mechanisms induce spontaneous PrP(C) misfolding leading to neurotoxic PrP-scrapie formation (PrP(SC)). The consequences of misfolded PrP(C) signalling are well characterized but little is known about the physiological roles of PrP(C) and its involvement in disease. Here we investigated wild-type PrP(C) signalling in synaptic function as well as the effects of a disease-relevant mutation within PrP(C) (proline-to-leucine mutation at codon 101). Expression of wild-type PrP(C) at the Drosophila neuromuscular junction leads to enhanced synaptic responses as detected in larger miniature synaptic currents which are caused by enlarged presynaptic vesicles. The expression of the mutated PrP(C) leads to reduction of both parameters compared with wild-type PrP(C). Wild-type PrP(C) enhances synaptic release probability and quantal content but reduces the size of the ready-releasable vesicle pool. Partially, these changes are not detectable following expression of the mutant PrP(C). A behavioural test revealed that expression of either protein caused an increase in locomotor activities consistent with enhanced synaptic release and stronger muscle contractions. Both proteins were sensitive to proteinase digestion. These data uncover new functions of wild-type PrP(C) at the synapse with a disease-relevant mutation in PrP(C) leading to diminished functional phenotypes. Thus, our data present essential new information possibly related to prion pathogenesis in which a functional synaptic role of PrP(C) is compromised due to its advanced conversion into PrP(SC) thereby creating a lack-of-function scenario.


Assuntos
Príons/metabolismo , Probabilidade , Vesículas Sinápticas/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Cálcio/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Endopeptidase K/metabolismo , Larva/efeitos dos fármacos , Larva/ultraestrutura , Camundongos , Atividade Motora/efeitos dos fármacos , Proteínas Mutantes/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/patologia , Junção Neuromuscular/ultraestrutura , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA