Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pediatr Res ; 76(5): 432-40, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25119340

RESUMO

BACKGROUND: Intrauterine growth restriction (IUGR) increases the risk of adult-onset hypercholesterolemia. High-fat diet (HFD) consumption potentiates IUGR-induced increased cholesterol. Cholesterol is converted to bile acids by Cyp7a1 in preparation for excretion. We hypothesized that IUGR rats fed a HFD will have increased cholesterol, decreased Cyp7a1 protein levels, and decreased bile acids compared to control rats fed a HFD. METHODS: At day 21, IUGR and control pups were placed on one of three diets: a regular chow or one of two HFDs containing 1% or 2% cholesterol. Cholesterol levels and hepatic Cyp7a1 protein levels were quantified a postnatal week 28. RESULTS: Both HFDs increased serum cholesterol levels in control rats, and HFD fed IUGR rats had further increased serum cholesterol up to 35-fold. Both HFDs increased hepatic cholesterol levels, and IUGR further increased hepatic cholesterol levels up to fivefold. IUGR decreased hepatic Cyp7a1 protein up to 75%, and hepatic bile acids up to 54%. CONCLUSION: IUGR increased cholesterol and bile acids and decreased Cyp7a1 protein in rats fed a HFD without changing food intake. These findings suggest that IUGR increases the vulnerability of HFD fed rats to hypercholesterolemia via decreased cholesterol conversion to bile acids.


Assuntos
Colesterol/sangue , Dieta Hiperlipídica , Retardo do Crescimento Fetal , Hipercolesterolemia/etiologia , Efeitos Tardios da Exposição Pré-Natal , Animais , Ácidos e Sais Biliares/metabolismo , Biomarcadores/sangue , Colesterol 7-alfa-Hidroxilase/metabolismo , Modelos Animais de Doenças , Ingestão de Alimentos , Ácidos Graxos/sangue , Feminino , Hipercolesterolemia/sangue , Hipercolesterolemia/enzimologia , Fígado/enzimologia , Masculino , Gravidez , Ratos Sprague-Dawley , Fatores de Tempo , Regulação para Cima , Aumento de Peso
2.
Syst Biol Reprod Med ; 59(4): 184-90, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23631676

RESUMO

Fetal growth restriction (FGR) is associated with impaired neurodevelopmental outcomes in affected newborns. The pathogenesis of FGR-associated neurodevelopmental impairment implicates abnormal hippocampal function. The steroid hormone estrogen and its receptor, estrogen receptor alpha (ERα), are involved in the normal programming of hippocampal development and structure. However, the impact of FGR on hippocampal estrogen and hippocampal ERα is not well characterized. We hypothesized that FGR will reduce hippocampal and serum levels of 17-beta estradiol and its receptor, ERα, in the newborn rat hippocampus. We further hypothesize that FGR will reduce hippocampal ERα levels in a region-specific manner. To test our hypotheses, we used the well characterized rat model of FGR induced by uteroplacental-insufficiency in the pregnant Sprague-Dawley rat. Hippocampi and serum were obtained from FGR and control day 0 rat pups and examined for hippocampal 17-beta estradiol, serum 17-beta estradiol, and ERα mRNA and protein levels. Immunohistochemistry was performed to examine region-specific ERα staining. FGR decreased hippocampal 17-beta estradiol levels in the hippocampi of male newborn rats but not females. Serum 17-beta estradiol levels were not affected by FGR in either gender. FGR decreased hippocampal ERα mRNA levels in males but not females. Hippocampal ERα protein levels by Western blotting were not affected by FGR. However, FGR decreased apparent ERα staining in the cornu ammonis (CA)1, CA3, and dentate gyrus regions in the hippocampi of male newborn rats but not females. We conclude that FGR affects the programming of hippocampal estrogen and hippocampal ERα levels in the newborn rat in a gender-specific manner.


Assuntos
Estradiol/sangue , Receptor alfa de Estrogênio/metabolismo , Retardo do Crescimento Fetal/fisiopatologia , Hipocampo/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Hipocampo/embriologia , Imuno-Histoquímica , Masculino , Gravidez , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA