RESUMO
Natural products are generally considered safe for human consumption, but this classification is often based on ethnobotanical surveys or their use in traditional medicine over a long period of time. However, edaphoclimatic factors are known to produce different chemotypes, which may affect the safety profile and bioactivities, and are not commonly considered for plants exploited as crops worldwide. Thymus carnosus Boiss., a thyme species with various health-promoting effects, has potential pharmaceutical applications, but edaphoclimatic factors were found to significantly impact its phytochemical composition. Thus, we aimed to assess the safety profile of T. carnosus extracts obtained from plants harvested in two locations over three consecutive years and to establish an association with specific components, an essential study in the search for new sources of nutraceuticals. Thus, the antiproliferative effect of an aqueous decoction (AD), hydroethanolic (HE) extracts, and major extracts' components of T. carnosus was evaluated on intestinal (Caco-2) and hepatic (HepG2) cell models, revealing effects dependent on extract type, cell line, and tested compounds. Flavonoids induced different cytotoxic patterns, which could be attributed to molecular structural differences. Flow cytometry analysis showed apoptosis and necrosis induction, mediated by the modulation of intracellular reactive oxygen species and mitochondrial membrane potential, effects that were dependent on the cell line and phytochemical composition and on the synergism between extracts components, rather than on the activity of an isolated compound. While ursolic acid was the component with the strongest impact on the difference between extraction methods, flavonoids assumed a pivotal role in the response of different cell lines to the extracts. We report for the first time, for Thymus spp. extracts, that variations in the phytochemical composition clearly influence the cellular response, thus highlighting the need for extract standardization for medicinal applications.
Assuntos
Estresse Oxidativo , Compostos Fitoquímicos , Extratos Vegetais , Thymus (Planta) , Thymus (Planta)/química , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/análise , Células CACO-2 , Células Hep G2 , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Flavonoides/farmacologia , Flavonoides/química , Flavonoides/análise , BiomarcadoresRESUMO
The effects of normal (NA) and controlled atmosphere (CA) storage and postharvest treatment with 1-methylcyclopropene (1-MCP) before CA storage for 5 months on the volatilome, biochemical composition and quality of 'Golden Delicious' (GD) and 'Red Delicious' (RD) apples were studied. Apples stored under NA and CA maintained and 1-MCP treatment increased firmness in both cultivars. NA storage resulted in a decrease of glucose, sucrose and fructose levels in both cultivars. When compared to CA storage, 1-MCP treatment caused a more significant decrease in sucrose levels and an increase in glucose levels. Additionally, 1-MCP-treated apples exhibited a significant decrease in malic acid content for both cultivars. All storage conditions led to significant changes in the abundance and composition of the volatilome in both cultivars. GD and RD apples responded differently to 1-MCP treatment compared to CA storage; higher abundance of hexanoate esters and (E,E)-α-farnesene was observed in RD apples treated with 1-MCP. While 1-MCP was effective in reducing (E,E)-α-farnesene abundance in GD apples, its impact on RD apples was more limited. However, for both cultivars, all storage conditions resulted in lower levels of 2-methylbutyl acetate, butyl acetate and hexyl acetate. The effectiveness of 1-MCP is cultivar dependent, with GD showing better results than RD.
Assuntos
Armazenamento de Alimentos , Malus , Malus/química , Malus/metabolismo , Ciclopropanos/farmacologia , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Frutas/química , Frutas/metabolismo , Sacarose/metabolismo , Malatos , Sesquiterpenos/análise , Glucose/metabolismo , Frutose/metabolismo , Frutose/análiseRESUMO
BACKGROUND: The apple (Malus domestica Borkh.) plays an important role in the trendy market of dried snacks because of its exceptional flavor and texture. In addition to the health benefits, there is also a general disposition to consume organic and do-it-yourself products. RESULTS: Three different drying temperatures, 65, 75, and 85 °C, were tested using a commercial ventilated drying oven in 'Royal Gala' and 'Golden Delicious' cultivars. Physical changes, including texture, color, shrinkage ratio, and microstructure, were evaluated for the temperatures and cultivars considered. Based on the results, particularly in terms of shrinkage, hardness, and crispiness, a drying temperature of 75 °C was selected to perform texture profile analyses throughout the drying period. Storability conditions were evaluated to determine the best moment to maintain the physical properties of the dried snacks during storage. Considered the more important property related to consumer preferences, crispiness was followed with puncture tests. CONCLUSION: The storage of apple chips, dried at the various temperatures, that must be performed in 5-10 min after removing from the drying oven, was assessed over the course of a month. Both the drying process and the subsequent storage proved effective in preserving the desired texture of the apple snacks, regardless of the specific cultivar or drying temperature used. Through this study, with a refined understanding of the changes occurring during the drying process and the optimization of storage conditions, we can confidently offer consumers the best combination of crispy and healthy snacks that meet their expectations. © 2023 Society of Chemical Industry.
Assuntos
Malus , Malus/química , Temperatura , Lanches , Dessecação/métodosRESUMO
Red berries have gained popularity as functional and nutritious food due to their health benefits, leading to increased consumer demand and higher production, totaling over 11,000 ktons for strawberries, raspberries, and blueberries combined in 2021. Nutritionally, strawberries, raspberries, and blueberries present high levels of vitamin C (9.7-58.8 mg/100 g dry weight [dw]), folates (6-24 µg/100 g dw), and minerals (96-228 mg/100 g dw). Due to their perishable nature, producers have utilized alcoholic fermentation to extend their shelf life, not only increasing the lifespan of red berries but also attracting consumers through the production of novel beverages. Strawberry, blueberry, and raspberry wines possess low alcohol (5.5-11.1% v/v), high acidity (3.2-17.6 g/L), and interesting bioactive molecules such as phenolic compounds, carotenoids, polysaccharides, and melatonin. Distillation holds tremendous potential for reducing food waste by creating red berry spirits of exceptional quality. Although research on red berry spirits is still in the early stages, future studies should focus on their production and characterization. By incorporating these factors, the production chain would become more sustainable, profitable, and efficient by reducing food waste, capitalizing on consumer acceptance, and leveraging the natural health-promoting characteristics of these products. Therefore, this review aims to provide a comprehensive overview of the characteristics of strawberry, blueberry, and red raspberry in berries, wines, and spirits, with a focus on their chemical composition and production methods.
Assuntos
Mirtilos Azuis (Planta) , Fragaria , Frutas , Rubus , Vinho , Frutas/química , Fragaria/química , Vinho/análise , Mirtilos Azuis (Planta)/química , Rubus/química , Valor Nutritivo , FermentaçãoRESUMO
Understanding food sustainability and healthy diets public awareness is of utmost importance since consumers are the main drivers of global consumption patterns. Using Google Trends data, from 2010 to 2021, we aim to explore the temporal dynamics of food sustainability public interest across Europe and its association with interest in sustainability, healthy diet, Mediterranean diet (MedDiet), and flexitarianism. Public interest in food sustainability has increased and is positively associated with the interest in the topic of sustainability. With few exceptions, no general association between food sustainability and healthy diet or MedDiet interest were found. Consistent associations between food sustainability and flexitarianism were found across most of the European regions and countries. Despite the growing interest, only flexitarianism seems to be associated with food sustainability. Understanding consumers' interest in food sustainability is crucial for the transition towards healthy and sustainable diets and to define educational and behavioural interventions.
Assuntos
Dieta Mediterrânea , Infodemiologia , Ferramenta de Busca , Alimentos , Dieta , Europa (Continente)RESUMO
Natural products used for their health-promoting properties have accompanied the evolution of humanity. Nowadays, as an effort to scientifically validate the health-promoting effects described by traditional medicine, an ever-growing number of bioactivities are being described for natural products and the phytochemicals that constitute them. Among them, medicinal plants and more specifically the Thymus genus spp., arise as products already present in the diet and with high acceptance, that are a source of phytochemicals with high pharmacological value. Phenolic acids, flavonoid glycoside derivatives, and terpenoids from Thymus spp. have been described for their ability to modulate cell death and survival pathways, much-valued bioactivities in the pharmaceutical industry, that continually sought-after new formulations to prevent undesired cell death or to control cell proliferation. Among these, wound treatment, protection from endogenous/exogenous toxic molecules, or the induction of selective cell death, such as the search for new anti-tumoral agents, arise as main objectives. This review summarizes and discusses studies on Thymus spp., as well as on compounds present in their extracts, with regard to their health-promoting effects involving the modulation of cell death or survival signaling pathways. In addition, studies regarding the main bioactive molecules and their cellular molecular targets were also reviewed. Concerning cell survival and proliferation, Thymus spp. present themselves as an option for new formulations designed for wound healing and protection against chemicals-induced toxicity. However, Thymus spp. extracts and some of their compounds regulate cell death, presenting anti-tumoral activity. Therefore Thymus spp. is a rich source of compounds with nutraceutical and pharmaceutical value.
Assuntos
Plantas Medicinais , Thymus (Planta) , Fitoterapia , Medicina Tradicional , Extratos Vegetais/química , Compostos Fitoquímicos/química , Morte CelularRESUMO
Under climate change threats, there is a growing need to adapt the conventional agronomic practices used in rainfed olive orchards by sustainable practices, in order to ensure adequate crop yield and olive oil quality and to preserve soil health. Therefore, for two years, the effects of conventional tillage practice (T) and two sustainable soil management strategies, a leguminous cover crop (LC) and its combination with natural zeolites (ZL), on the yield, fatty acid composition, polyphenolic profile and quality indices of olive fruits and oil were evaluated. Crop yield was significantly increased by LC and ZL in the first year. Although in the second year no significant differences were verified, the cumulative yield increased significantly by 31.6% and 35.5% in LC and ZL trees, respectively. LC enhanced the moisture and size of olives, while ZL increased, in general, the concentrations of oleuropein, verbascoside, caffeic acid and epicatechin, as well the oleic/linoleic ratio in fruits and the levels of 3,4-dihydroxyphenylglycol, tyrosol, verbascoside and caffeic acid in olive oil. Despite the higher concentration of total phenols in the fruits and oil from T trees in the warmer and dryer year, the quality of the oil decreased, mainly when compared with ZL, as evidenced by the peroxide value and K232 and K270 coefficients. In short, both sustainable soil management strategies appear to be promising practices to implement in olive orchards under rainfed conditions, but the innovative strategy of combining zeolites with legume cover crops, first reported in the present study, confers advantages from a nutritional and technological point of view. Nevertheless, studies subjected to the long-term use of these practices should be conducted to ensure the sustainability of the crop yield and olive oil quality.
Assuntos
Fabaceae , Olea , Zeolitas , Azeite de Oliva , Ácidos Graxos , Produtos Agrícolas , Fenóis , Solo , VerdurasRESUMO
BACKGROUND: The chemical composition, phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO) and peroxidase (POD) activity of the three main Portuguese elderberry cultivars were determined for the first time through five stages of maturation, in different harvesting years, to gain a deeper understanding of the effect of climatic conditions and enzymatic activity involved in the synthesis and degradation of phenolic compounds on the final quality of elderberries. RESULTS: Simple sugar and anthocyanin content increased with maturation but total acidity and flavonoids content decreased, and cinnamic acids did not show a clear trend. Climatic conditions seem to have a decisive influence on the elderberry maturation, namely the total number of hot (>30 °C) days. The PAL, PPO, and POD activity can explain the differences observed in elderberry phenolic content. CONCLUSION: These results highlighted the influence of climatic conditions in each harvesting season on elderberry development and quality. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
Sambucus , Sambucus/química , Sambucus/metabolismo , Açúcares/análise , Fenóis/análise , Antioxidantes/análise , Frutas/químicaRESUMO
Thymus capitellatus Hoffmanns & Link is an endemic species of the Iberian Peninsula listed as near-threatened, due to its restricted geographical distribution, occurring mainly in Portugal's mainland. In this work, we detail for the first time T. capitellatus extracts' phytochemical composition, as well as an evaluation of bioactivities to point out potential health benefits. Aqueous decoction (AD) and hydroethanolic (HE) extracts were obtained, both rich in flavonoids. However, quercetin-(?)-O-hexoside was identified as the main compound in T. capitellatus HE extract, while the phenolic acid rosmarinic acid was the main component of AD extracts. In addition, HE extract presents significant amounts of salvianolic acids and of the terpenoids oleanolic and ursolic acid. Both extracts showed antioxidant activity, evaluated by their capacity to scavenge ABTS and superoxide radicals, as well as an ability to prevent lipid peroxidation. AD extracts were also effective in scavenging hydroxyl and nitric oxide radicals. As potential functional foods, T. capitellatus extracts presented neuroprotective and anti-diabetic activity, in addition to time- and dose-dependent anti-proliferative activity against Caco-2 (colorectal adenocarcinoma) and HepG2 (hepatic carcinoma) cells. HE extract presented higher cytotoxicity than AD extract, and HepG2 cells were more resistant than Caco-2 cells. After 24 h exposure to HE extract, the IC50 values were 330 µg/mL and 447 µg/mL for Caco-2 and HepG2 cells, respectively. T. capitellatus has potential as a functional food or as a source of bioactive molecules. These results also highlight the need to preserve species with as yet unknown molecular compositions and potential medicinal applications.
Assuntos
Antioxidantes , Extratos do Timo , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células CACO-2 , Peroxidação de LipídeosRESUMO
Trichloroanisole (TCA) in wine results in a sensory defect called "cork taint", a significant problem for the wine industry. Wines can become contaminated by TCA absorption from the atmosphere through contaminated wood barrels, cork stoppers, and wood pallets. Air-depleted solvent-impregnated (ADSI) cork powder (CP) was used to mitigate TCA in wines. The ADSI CP (0.25 g/L) removed 91% of TCA (6 ng/L levels), resulting in an olfactory activity value of 0.14. A Freundlich isotherm described ADSI CP TCA adsorption with irreversible adsorption and a KF = 33.37. ADSI CP application had no significant impact on the phenolic profile and chromatic characteristics of red wine. Using headspace sampling with re-equilibration, an average reduction in the volatile abundance of 29 ± 15%, 31 ± 19%, and 37 ± 24% was observed for the 0.10, 0.25, and 0.50 g/L ADSI CP, respectively. The alkyl esters and acids were the most affected. The impact observed was much lower when using headspace sampling without re-equilibration. Isoamyl acetate, ethyl hexanoate, ethyl hexanoate, and ethyl decanoate abundances were not significantly different from the control wine and 0.25 g/L ADSI CP application. Thus, ADSI CP can be a new sustainable fining agent to remove this "off-flavor" from wine, with a reduced impact on the wine characteristics.
Assuntos
Vinho , Anisóis/análise , Pós , Solventes , Vinho/análiseRESUMO
'Mencía'/'Jaen' it's an important red grape variety, exclusive of the Iberian Peninsula, used in wine production namely in Bierzo D.O. and Dão D.O., respectively. This work evaluates the effect of the two different "terroirs" on the phenolic composition and chromatic characteristics of 'Mencía'/'Jaen' monovarietal wines produced at an industrial scale in the same vintage. Using Principal Component Analysis (PCA), Partial Least Squares-Discrimination Analysis (PLS-DA), and Orthogonal PLS-DA (OPLS-DA) it was found that peonidin-3-coumaroylglucoside, petunidin-3-glucoside, malvidin-3-coumaroylglucoside, peonidin-3-glucoside, malvidin-3-acetylglucoside, malvidin-3-glucoside, and ferulic acid were the phenolic compounds with the highest differences between the two regions. PLS regression allowed to correlate the differences in lightness (L*) and redness (a*) of wines from 'Jaen' and 'Mencía' to differences in colored anthocyanins, polymeric pigments, total pigments, total anthocyanins, cyanidin-3-acetylglucoside, delphinidin-3-acetylglucoside, delphinidin-3-glucoside, peonidin-3-coumaroylglucoside, petunidin-3-glucoside and malvidin-3-glucoside in wines, and the colorless ferulic, caffeic, and coutaric acids, and ethyl caffeate. The wines a* values were more affected by colored anthocyanins, ferulic acid, total anthocyanins, delphinidin-3-acetylglucoside, delphinidin-3-glucoside and petunidin-3-acetylglucoside, and catechin. The positive influence of ferulic acid in the a* values and ferulic, caffeic, coutaric acids, and ethyl caffeate on the L* values can be due to the co-pigmentation phenomena. The higher dryness and lower temperatures during the September nights in this vintage might explain the differences observed in the anthocyanin content and chromatic characteristics of the wines.
Assuntos
Fenóis/análise , Vinho/análise , Análise Discriminante , Portugal , Análise de Componente PrincipalRESUMO
Vegetable oils obtained from different plants are known for their beneficial effects on prophylaxis and supportive treatment of a great deal of inflammatory-mediated conditions. Their wide range of saturated and unsaturated fatty acids, and the presence of other ingredients (e.g., tocopherols, chlorophylls), provide them with anti-inflammatory, antioxidant and anticancer properties, which are worth being exploited. In this study, we have carried out the spectrofluorometric analysis of selected vegetable oils, namely apricot (Prunus armeniaca) kernel oil; blueberry (Vaccinium spp.) seed oil; argan (Argania spinosa) nut oil; kiwi (Actinidia deliciosa) seed oil; grape (Vitis vinifera) seed oil; evening primrose (Oenothera biennis) oil and meadowfoam (Limnanthes alba) seed oil, with the purpose to detect their fluorescent ingredients for further identification and bioactivity comparison. The obtained two- (2D) and three-dimensional (3D) emission spectra offered a complete description of the fluorescent components of the mixture and revealed different features for studied oils.
Assuntos
Mirtilos Azuis (Planta)/química , Corantes Fluorescentes/análise , Óleos de Plantas/análise , Prunus armeniaca/química , Sapotaceae/química , Espectrometria de Fluorescência/métodos , Vitis/químicaRESUMO
BACKGROUND: Cropping practices focusing on agronomic water use efficiency and their impact on quality parameters must be investigated to overcome constraints affecting olive groves. We evaluated the response of olive trees (Olea europaea, cv. 'Cobrançosa') to different water regimes: full irrigation (FI, 100% crop evapotranspiration (ETc )), and three deficit irrigation strategies (DIS) (regulated (RDI, irrigated with 80% of crop evapotranspiration (ETc ) in phases I and III of fruit growth and 10% of ETc in the pit hardening stage), and two continuous sustained strategies (SDI) - a conventional SDI (27.5% of ETc ), and low-frequency irrigation adopted by the farmer (SDIAF, 21.2% of ETc ). RESULTS: The effects of water regimes on the plant water status, photosynthetic performance, metabolite fluctuations and fruit quality parameters were evaluated. All DIS treatments enhanced leaf tissue density; RDI and SDI generally did not affect leaf water status and maintained photosynthetic machinery working properly, and the SDIAF treatment impaired olive tree physiological indicators. The DIS treatments maintained the levels of primary metabolites in leaves, but SDIAF plants showed signs of oxidative stress. Moreover, DIS treatments led to changes in the secondary metabolism, both in leaves and in fruits, with increased total phenolic compounds, ortho-diphenols, and flavonoid concentration, and higher total antioxidant capacity, as well higher oil content. Phenolic profiles showed the relevance of an early harvest in order to obtain higher oleuropein levels with associated higher health benefits. CONCLUSION: Adequate DIS are essential for sustainable olive growing, as they enhance the competitiveness of the sector in terms of olive production and associated quality parameters. © 2019 Society of Chemical Industry.
Assuntos
Irrigação Agrícola/métodos , Frutas/química , Olea/crescimento & desenvolvimento , Extratos Vegetais/química , Água/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Olea/química , Olea/metabolismo , Estresse Oxidativo , Fenóis/química , Fenóis/metabolismo , Fotossíntese , Extratos Vegetais/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Água/análiseRESUMO
The presence of 4-ethylphenol, 4-ethylguaiacol and 4-ethylcatechol in red wines affect negatively their aroma conferring horsy, barnyard, smoky and medicinal aromatic notes. These volatile phenols formed from free hydroxycinnamic acids and their ethyl esters by Dekkera/Brettanomyces yeasts, can contaminate wines. Their formation can cause serious negative economic impact to the wine industry worldwide as consumers tend to reject these wines. For these reasons various preventive and remedial treatments have been studied. This review summarises the wine microbial volatile phenols formation, preventive measures during winemaking and remedial treatments in finished wines along with their advantages and limitations for dealing with this sensory defect and impact on wine quality. Also it is important to control the levels of volatile phenols in wines using fast and convenient analytical methods namely with a detection limit below their olfactory perception threshold. The analytical methods available for quality control and performance characteristics as well their advantages and disadvantages when dealing with a complex matrix like wine are discussed in detail.
Assuntos
Brettanomyces/metabolismo , Catecóis/metabolismo , Dekkera/metabolismo , Guaiacol/análogos & derivados , Fenóis/metabolismo , Vinho/microbiologia , Catecóis/análise , Guaiacol/análise , Guaiacol/metabolismo , Fenóis/análise , Vinho/análiseRESUMO
BACKGROUND: Consumer demand for organic products is increasing because of their claimed health benefits. Blackberries are a rich source of polyphenols, with high antioxidant activity; nevertheless, the impact of organic versus conventional agricultural practices on its phytochemical composition is unknown. 'Loch Ness' and 'Chester Thornless' were selected as blackberry cultivars for this study because of their desired sensory and technological properties, which make them more suitable for export. RESULTS: 'Loch Ness' variety presented a higher amounts of polyphenols and higher antioxidant activity when compared to the 'Chester Thornless' variety. The impact of agricultural practices on the phytochemical composition of the two varieties was contradictory. Under organic agricultural practices, levels of polyphenols increased for 'Loch Ness' and decreased for 'Chester Thornless', whereas the soluble solids content increased in both varieties. These changes in composition were correlated with changes observed in the blackberries' sensory profile. CONCLUSION: The effect of agricultural practices on the blackberries' chemical and sensory profile was dependent on the variety and cannot be generalized. © 2018 Society of Chemical Industry.
Assuntos
Produção Agrícola/métodos , Agricultura Orgânica/métodos , Extratos Vegetais/química , Polifenóis/química , Rubus/química , Antioxidantes/química , Frutas/química , Humanos , Rubus/crescimento & desenvolvimento , PaladarRESUMO
BACKGROUND: Several studies have reported the influence of diverse winemaking technologies in white wine characteristics. However, the impact of the use of different oak wood barrel capacities and utilization time on the evolution of white wine phenolic content and sensorial characteristics are not usually considered. Thus the aim of this work was to evaluate the effect of oak wood barrel capacity and utilization time on the evolution of phenolic compounds, browning potential index and sensorial profile of an Encruzado white wine. RESULTS: For the 180 aging days considered, the use of new oak wood barrels induced a greater increase in global phenolic composition, including several individual compounds, such as gallic and ellagic acid, independently of the barrel capacity. Tendency for a lesser increase of the browning potential index values was detected for white wines aged in new oak wood barrels. The sensorial profile evolution, showed significant differences only for the aroma descriptors, namely for 'wood aroma' and 'aroma intensity', white wine aged in 225 L new oak wood barrels being the highest scored. CONCLUSION: The results show that, in general, the use of different capacities and utilization time of oak wood barrels used for white wine aging could play an important role in white wine quality. © 2017 Society of Chemical Industry.
Assuntos
Manipulação de Alimentos/métodos , Fenóis/química , Quercus/química , Vinho/análise , Madeira/química , Manipulação de Alimentos/instrumentação , Humanos , Odorantes/análise , Paladar , Fatores de Tempo , Compostos Orgânicos Voláteis/químicaRESUMO
Food intake is a basic need to sustain life, but foodborne pathogens and food-related xenobiotics are also the main health concerns regarding intestinal barrier homeostasis. With a predominant role in the well-being of the entire human body, intestinal barrier homeostasis is strictly regulated by epithelial and immune cells. These cells are also the main intervenients in oxidative stress and inflammation-related diseases in the intestinal tract, triggered, for example, by genetic/epigenetic factors, food additives, pesticides, drugs, pathogens, and their metabolites. Nevertheless, the human diet can also be seen as a solution for the problem, mainly via the inclusion of functional foods or nutraceuticals that may act as antioxidant/anti-inflammatory agents to prevent and mitigate acute and chronic oxidative damage and inflammation. A literature analysis of recent advances in this topic highlights the significant role of Nrf2 (nuclear factor erythroid 2-related factor 2) and NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells) pathways in these biological processes, with many natural products and phytochemicals targeting endogenous antioxidant systems and cytokine production and balance. In this review, we summarized and discussed studies using in vitro and in vivo models of the intestinal tract used to reproduce oxidative damage and inflammatory events, as well as the role of natural products as modulators of Nrf2 and NK-kB pathways.
RESUMO
Beginning in ancient times, human societies around the world continue to produce fermented beverages from locally available sugar sources [...].
RESUMO
This study demonstrated the feasibility of fermenting and distilling low-commercial-value red fruits such as red raspberries, blueberries, and strawberries to produce high-value red fruit spirits. The fermentation process was efficient, with all red berry wines achieving a notable ethanol conversion yield (46.33 to 66.31%), without the need for nutrient supplementation or fruit juice solid separation, which showed no significant effect on the quality of the final product. Small-scale copper Charentais alembic distillation of the fermented red fruit juices resulted in fruit spirits equivalent to 1%, 7%, and 2% of the initial volume for red raspberries, blueberries, and strawberries, respectively. Except for the blueberry spirit, which had a lower volatile compound concentration (79.4 g/hL, absolute alcohol), all the produced red fruit spirits complied with legislation, including ethanol (37.9-40.2% v/v) and methanol (22.8-877.9 g/hL, absolute alcohol) concentrations and exhibited favorable aromatic profiles. The findings highlight that fermentation and distillation are straightforward, consistent, and reproducible methods, enabling the production of high-quality red fruit spirits from economically viable red fruit sources. This presents a significant opportunity in the spirits market, offering versatile applications as low-alcohol options, base spirits, or, with re-distillation, high-alcohol spirits.
RESUMO
The primary cause of bottled wine sediment is tartrate crystal precipitation. To prevent this, wines undergo a stabilization process before bottling. The most commonly used method is cold stabilization, which induces the precipitation of tartrate crystals that are then removed, thereby eliminating the excess ions that cause instability in wine. Another approach to tartaric stabilization is using enological stabilizers with a colloid protective effect, which prevents the formation of tartrate crystals. The most commonly used tartaric stabilizers are sodium carboxymethylcellulose (CMC) and metatartaric acid. However, both have drawbacks: they are semi-synthetic products, and metatartaric acid degrades over time, losing its stabilizing effect. This study aims to compare the effects of cold stabilization, stabilization with CMC, and metatartaric acid on the chemical composition, particularly the volatilome, of white, rosé, and red wines. Cold stabilization significantly impacted the wine volatilome, especially in white and rosé wines, by decreasing total alcohols and increasing total esters. It also reduced the color intensity of rosé and red wines by lowering monomeric anthocyanins. In contrast, enological stabilizers had minimal impact on the wines' phenolic composition, chromatic characteristics, and volatilome. The sensory impact of cold stabilization is complex; it can potentially enhance the aroma of white and rosé wines by increasing ester VOCs and decreasing higher alcohols, but it negatively affects the color of rosé and red wines.