Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Dis ; 107(1): 76-82, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35657716

RESUMO

Husk spot, a fungal disease of macadamia pericarps (Pseudocercospora macadamiae), induces premature abscission in several major commercial cultivars. Breeding for resistance to husk spot is a priority of the Australian macadamia industry. Due to the large tree size of macadamia and high numbers of progeny in breeding populations, inoculating for resistance screening is laborious and time consuming. Previously utilized methods included direct applications of P. macadamiae suspensions and the hanging of bags of diseased husks above developing fruit in tree canopies. In this study, both methods were modified to allow for efficient application in large-scale breeding populations, and their efficacy was evaluated. Two quantities of diseased husk per bag, 'large' (75 g) and 'small' (30 g), and two concentrations of sprayed P. macadamiae suspensions, 'stock' (5 × 105 propagules/ml) and 'dilute' (2.5 × 105 propagules/ml), were tested across two fruiting seasons. Treatments were compared against a control (sterile water) in commercial cultivars A38 and A4. Husk spot incidence and severity produced by small bags were significantly affected by season. A significant season effect was less common for other treatments. All four treatments infected over 50% of target fruit in each season, but the highest husk spot incidence across both seasons (≥85%) was produced from large bags. Overall, the large bags were the most reliable method for infection of target fruit. Results also demonstrate the importance of considering the effect of season when selecting husk spot inoculation methods.


Assuntos
Macadamia , Melhoramento Vegetal , Austrália , Macadamia/genética , Incidência , Suspensões
2.
Front Microbiol ; 9: 2785, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30546349

RESUMO

Microbial community succession in tailings materials is poorly understood at present, and likely to be substantially different from similar processes in natural primary successional environments due to the unusual geochemical properties of tailings and the isolated design of tailings storage facilities. This is the first study to evaluate processes of primary succession in microbial communities colonizing unamended tailings, and compare the relative importance of stochastic (predominantly dust-borne dispersal) and deterministic (strong selection pressures from extreme geochemical properties) processes in governing community assembly rates and trajectories to those observed in natural environments. Dispersal-based recruitment required > 6 months to shift microbial community composition in unamended, field-weathered gold tailings; and in the absence of targeted inoculants, recruitment was dominated by salt- and alkali-tolerant species. In addition, cell numbers were less than 106 cells/g tailings until > 6 months after deposition. Laboratory experiments simulating microbial cell addition via dust revealed that high (>6 months' equivalent) dust addition rates were required to effect stabilization of microbial cell counts in tailings. In field-weathered tailings, topsoil addition during rehabilitation works exerted a double effect, acting as a microbial inoculant and correcting geochemical properties of tailings. However, microbial communities in rehabilitated tailings remained compositionally distinct from those of reference soils in surrounding environments. pH, water extractable Mg, and water extractable Fe emerged as major controls on microbial community composition in the field-weathered gold tailings. Overall, this study highlights the need for application of targeted microbial inoculants to accelerate rates of microbial community succession in tailings, which are limited primarily by slow dispersal due to physical and spatial isolation of tailings facilities from inoculant sources; and for geochemical properties of tailings to be amended to moderate values to encourage microbial community diversification and succession.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA