Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 603, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821819

RESUMO

Zinc finger-homeodomain (ZHD) proteins are mostly expressed in plants and are involved in proper growth and development and minimizing biotic and abiotic stress. A recent study identified and characterized the ZHD gene family in chilli (Capsicum annuum L.) to determine their probable molecular function. ZHD genes with various physicochemical characteristics were discovered on twelve chromosomes in chilli. We separated ZHD proteins into two major groups using sequence alignment and phylogenetic analysis. These groups differ in gene structure, motif distribution, and a conserved ZHD and micro-zinc finger ZF domain. The majority of the CaZHDs genes are preserved, early duplication occurred recently, and significant pure selection took place throughout evolution, according to evolutionary study. According to expression profiling, the genes were found to be equally expressed in tissues above the ground, contribute to plant growth and development and provide tolerance to biotic and abiotic stress. This in silico analysis, taken as a whole, hypothesized that these genes perform distinct roles in molecular and phytohormone signaling processes, which may serve as a foundation for subsequent research into the roles of these genes in other crops.


Assuntos
Capsicum , Capsicum/genética , Capsicum/metabolismo , Filogenia , Proteínas de Ligação a DNA/genética , Dedos de Zinco/genética , Genes Homeobox , Estresse Fisiológico/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Genes (Basel) ; 13(11)2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36421787

RESUMO

Zinc finger-homeodomain proteins are amongst the most prominent transcription factors (TFs) involved in biological processes, such as growth, development, and morphogenesis, and assist plants in alleviating the adverse effects of abiotic and biotic stresses. In the present study, genome-wide identification and expression analyses of the maize ZHD gene family were conducted. A total of 21 ZHD genes with different physicochemical properties were found distributed on nine chromosomes in maize. Through sequence alignment and phylogenetic analysis, we divided ZHD proteins into eight groups that have variations in gene structure, motif distribution, and a conserved ZF domain. Synteny analysis indicated duplication in four pairs of genes and the presence of orthologues of maize in monocots. Ka/Ks ratios suggested that strong pure selection occurred during evolution. Expression profiling revealed that the genes are evenly expressed in different tissues. Most of the genes were found to make a contribution to abiotic stress response, plant growth, and development. Overall, the evolutionary research on exons and introns, motif distributions, and cis-acting regions suggests that these genes play distinct roles in biological processes which may provide a basis for further study of these genes' functions in other crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Zea mays , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Família Multigênica , Perfilação da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA