Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 485(7400): 651-5, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22660329

RESUMO

Extracellular plaques of amyloid-ß and intraneuronal neurofibrillary tangles made from tau are the histopathological signatures of Alzheimer's disease. Plaques comprise amyloid-ß fibrils that assemble from monomeric and oligomeric intermediates, and are prognostic indicators of Alzheimer's disease. Despite the importance of plaques to Alzheimer's disease, oligomers are considered to be the principal toxic forms of amyloid-ß. Interestingly, many adverse responses to amyloid-ß, such as cytotoxicity, microtubule loss, impaired memory and learning, and neuritic degeneration, are greatly amplified by tau expression. Amino-terminally truncated, pyroglutamylated (pE) forms of amyloid-ß are strongly associated with Alzheimer's disease, are more toxic than amyloid-ß, residues 1-42 (Aß(1-42)) and Aß(1-40), and have been proposed as initiators of Alzheimer's disease pathogenesis. Here we report a mechanism by which pE-Aß may trigger Alzheimer's disease. Aß(3(pE)-42) co-oligomerizes with excess Aß(1-42) to form metastable low-n oligomers (LNOs) that are structurally distinct and far more cytotoxic to cultured neurons than comparable LNOs made from Aß(1-42) alone. Tau is required for cytotoxicity, and LNOs comprising 5% Aß(3(pE)-42) plus 95% Aß(1-42) (5% pE-Aß) seed new cytotoxic LNOs through multiple serial dilutions into Aß(1-42) monomers in the absence of additional Aß(3(pE)-42). LNOs isolated from human Alzheimer's disease brain contained Aß(3(pE)-42), and enhanced Aß(3(pE)-42) formation in mice triggered neuron loss and gliosis at 3 months, but not in a tau-null background. We conclude that Aß(3(pE)-42) confers tau-dependent neuronal death and causes template-induced misfolding of Aß(1-42) into structurally distinct LNOs that propagate by a prion-like mechanism. Our results raise the possibility that Aß(3(pE)-42) acts similarly at a primary step in Alzheimer's disease pathogenesis.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/toxicidade , Ácido Glutâmico/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/toxicidade , Fragmentos de Peptídeos/química , Príons/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Amiloide/química , Amiloide/efeitos dos fármacos , Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Modelos Animais de Doenças , Ácido Glutâmico/química , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Príons/química , Príons/toxicidade , Proteínas tau/deficiência , Proteínas tau/genética
2.
Hepatology ; 58(4): 1326-38, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23744565

RESUMO

UNLABELLED: Nonalcoholic fatty liver disease is the most common liver disease in both adults and children. The earliest stage of this disease is hepatic steatosis, in which triglycerides are deposited as cytoplasmic lipid droplets in hepatocytes. Through a forward genetic approach in zebrafish, we found that guanosine monophosphate (GMP) synthetase mutant larvae develop hepatic steatosis. We further demonstrate that activity of the small GTPase Rac1 and Rac1-mediated production of reactive oxygen species (ROS) are down-regulated in GMP synthetase mutant larvae. Inhibition of Rac1 activity or ROS production in wild-type larvae by small molecule inhibitors was sufficient to induce hepatic steatosis. More conclusively, treating larvae with hydrogen peroxide, a diffusible ROS that has been implicated as a signaling molecule, alleviated hepatic steatosis in both GMP synthetase mutant and Rac1 inhibitor-treated larvae, indicating that homeostatic production of ROS is required to prevent hepatic steatosis. We further found that ROS positively regulate the expression of the triglyceride hydrolase gene, which is responsible for the mobilization of stored triglycerides in hepatocytes. Consistently, inhibition of triglyceride hydrolase activity in wild-type larvae by a small molecule inhibitor was sufficient to induce hepatic steatosis. CONCLUSION: De novo GMP synthesis influences the activation of the small GTPase Rac1, which controls hepatic lipid dynamics through ROS-mediated regulation of triglyceride hydrolase expression in hepatocytes.


Assuntos
Fígado Gorduroso/prevenção & controle , Homeostase/fisiologia , Fígado/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/metabolismo , Animais , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Modelos Animais de Doenças , Fígado Gorduroso/metabolismo , Modelos Animais , Mutação/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
3.
Prion ; 7(1): 14-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22965142

RESUMO

Alzheimer disease (AD) has traditionally been thought to involve the misfolding and aggregation of two different factors that contribute in parallel to pathogenesis: amyloid-ß (Aß) peptides, which represent proteolytic fragments of the transmembrane amyloid precursor protein, and tau, which normally functions as a neuronally enriched, microtubule-associated protein that predominantly accumulates in axons. Recent evidence has challenged this model, however, by revealing numerous functional interactions between Aß and tau in the context of pathogenic mechanisms for AD. Moreover, the propagation of toxic, misfolded Aß and tau bears a striking resemblance to the propagation of toxic, misfolded forms of the canonical prion protein, PrP, and misfolded Aß has been shown to induce tau misfolding in vitro through direct, intermolecular interaction. In this review we discuss evidence for the prion-like properties of both Aß and tau individually, as well as the intriguing possibility that misfolded Aß acts as a template for tau misfolding in vivo.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Príons/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/análise , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Príons/análise , Dobramento de Proteína , Proteínas tau/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA