Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Nature ; 584(7821): 387-392, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32814885

RESUMO

Owing to their ultralow thermal conductivity and open pore structure1-3, silica aerogels are widely used in thermal insulation4,5, catalysis6, physics7,8, environmental remediation6,9, optical devices10 and hypervelocity particle capture11. Thermal insulation is by far the largest market for silica aerogels, which are ideal materials when space is limited. One drawback of silica aerogels is their brittleness. Fibre reinforcement and binders can be used to overcome this for large-volume applications in building and industrial insulation5,12, but their poor machinability, combined with the difficulty of precisely casting small objects, limits the miniaturization potential of silica aerogels. Additive manufacturing provides an alternative route to miniaturization, but was "considered not feasible for silica aerogel"13. Here we present a direct ink writing protocol to create miniaturized silica aerogel objects from a slurry of silica aerogel powder in a dilute silica nanoparticle suspension (sol). The inks exhibit shear-thinning behaviour, owing to the high volume fraction of gel particles. As a result, they flow easily through the nozzle during printing, but their viscosity increases rapidly after printing, ensuring that the printed objects retain their shape. After printing, the silica sol is gelled in an ammonia atmosphere to enable subsequent processing into aerogels. The printed aerogel objects are pure silica and retain the high specific surface area (751 square metres per gram) and ultralow thermal conductivity (15.9 milliwatts per metre per kelvin) typical of silica aerogels. Furthermore, we demonstrate the ease with which functional nanoparticles can be incorporated. The printed silica aerogel objects can be used for thermal management, as miniaturized gas pumps and to degrade volatile organic compounds, illustrating the potential of our protocol.

2.
Small ; 19(3): e2202470, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36449596

RESUMO

The increasing demand for functional materials and an efficient use of sustainable resources makes the search for new material systems an ever growing endeavor. With this respect, architected (meta-)materials attract considerable interest. Their fabrication at the micro- and nanoscale, however, remains a challenge, especially for composites with highly different phases and unmodified reinforcement fillers. This study demonstrates that it is possible to create a non-cytotoxic nanocomposite ink reinforced by a sustainable phase, cellulose nanocrystals (CNCs), to print and tune complex 3D architectures using two-photon polymerization, thus, advancing the state of knowledge toward the microscale. Micro-compression, high-res scanning electron microscopy, (polarised) Raman spectroscopy, and composite modeling are used to study the structure-property relationships. A 100% stiffness increase is observed already at 4.5 wt% CNC while reaching a high photo-polymerization degree of ≈80% for both neat polymers and CNC-composites. Polarized Raman and the Halpin-Tsai composite-model suggest a random CNC orientation within the polymer matrix. The microscale approach can be used to tune arbitrary small scale CNC-reinforced polymer-composites with comparable feature sizes. The new insights pave the way for future applications where the 3D printing of small structures is essential to improve performances of tissue-scaffolds, extend bio-electronics applications or tailor microscale energy-absorption devices.


Assuntos
Nanocompostos , Nanopartículas , Polímeros/química , Celulose/química , Nanopartículas/química , Nanocompostos/química , Impressão Tridimensional
3.
Small ; 19(50): e2300771, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37691091

RESUMO

Diatoms have long been used as living biological indicators for the assessment of water quality in lakes and rivers worldwide. While this approach benefits from the great diversity of these unicellular algae, established protocols are time-consuming and require specialized equipment. Here, this work 3D prints diatom-laden hydrogels that can be used as a simple multiplex bio-indicator for water assessment. The hydrogel-based living materials are created with the help of a desktop extrusion-based printer using a suspension of diatoms, cellulose nanocrystals (CNC) and alginate as bio-ink constituents. Rheology and mechanical tests are employed to establish optimum bio-ink formulations, whereas cell culture experiments are utilized to evaluate the proliferation of the entrapped diatoms in the presence of selected water contaminants. Bioprinting of diatom-laden hydrogels is shown to be an enticing approach to generate living materials that can serve as low-cost bio-indicators for water quality assessment.


Assuntos
Bioimpressão , Diatomáceas , Bioimpressão/métodos , Qualidade da Água , Hidrogéis/química , Reologia , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Tinta
4.
Biomacromolecules ; 24(9): 3961-3971, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37589321

RESUMO

While biomaterials have become indispensable for a wide range of tissue repair strategies, second removal procedures oftentimes needed in the case of non-bio-based and non-bioresorbable scaffolds are associated with significant drawbacks not only for the patient, including the risk of infection, impaired healing, or tissue damage, but also for the healthcare system in terms of cost and resources. New biopolymers are increasingly being investigated in the field of tissue regeneration, but their widespread use is still hampered by limitations regarding mechanical, biological, and functional performance when compared to traditional materials. Therefore, a common strategy to tune and broaden the final properties of biopolymers is through the effect of different reinforcing agents. This research work focused on the fabrication and characterization of a bio-based and bioresorbable composite material obtained by compounding a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) matrix with acetylated cellulose nanocrystals (CNCs). The developed biocomposite was further processed to obtain three-dimensional scaffolds by additive manufacturing (AM). The 3D printability of the PHBH-CNC biocomposites was demonstrated by realizing different scaffold geometries, and the results of in vitro cell viability studies provided a clear indication of the cytocompatibility of the biocomposites. Moreover, the CNC content proved to be an important parameter in tuning the different functional properties of the scaffolds. It was demonstrated that the water affinity, surface roughness, and in vitro degradability rate of biocomposites increase with increasing CNC content. Therefore, this tailoring effect of CNC can expand the potential field of use of the PHBH biopolymer, making it an attractive candidate for a variety of tissue engineering applications.


Assuntos
Celulose , Poli A , Humanos , Hidroxibutiratos , Impressão Tridimensional
5.
Appl Microbiol Biotechnol ; 107(4): 1465-1476, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36683057

RESUMO

Trichoderma spp. are ubiquitous soil-borne fungi that are widely used in biological control to promote and regulate healthy plant growth, as well as protect against plant pathogens. However, as with many biological materials, the relative instability of Trichoderma propagules limits its practical use in industrial applications. Therefore, there has been significant research interest in developing novel formulations with various carrier substances that are compatible with these fungal propagules and can enhance the shelf-life and overall efficacy of the Trichoderma. To this end, herein, we investigate the use of a variety of biopolymers and nanoparticles for the stabilization of Trichoderma atrobrunneum T720 conidia for biological control. The best-performing agents-agar and cellulose nanocrystals (CNC)-were then used in the preparation of oil-in-water emulsions to encapsulate conidia of T720. Emulsion properties including oil type, oil:water ratio, and biopolymer/particle concentration were investigated with respect to emulsion stability, droplet size, and viability of T720 conidia over time. Overall, agar-based formulations yielded highly stable emulsions with small droplet sizes, showing no evidence of drastic creaming, or phase separation after 1 month of storage. Moreover, agar-based formulations were able to maintain ~ 100% conidial viability of T720 after 3 months of storage, and over 70% viability after 6 months. We anticipate that the results demonstrated herein will lead to a new generation of significantly improved formulations for practical biological control applications. KEY POINTS: • Various biopolymers were evaluated for improving the stability of Trichoderma conidia • Oil in water emulsions was prepared using cellulose nanocrystals and agar as interface stabilizers • Agar-based emulsions showed ~ 100% viability for encapsulated conidia after 3 months of storage.


Assuntos
Celulose , Nanopartículas , Esporos Fúngicos , Emulsões/química , Ágar , Celulose/química , Água/química , Nanopartículas/química
6.
Biomacromolecules ; 23(3): 676-686, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35194986

RESUMO

Structural characterization techniques are fundamental to correlate the material macro-, nano-, and molecular-scale structures to their macroscopic properties and to engineer hierarchical materials. Here, we combine X-ray transmission with scanning small- and wide-angle X-ray scattering (sSWAXS) to investigate ultraporous and lightweight biopolymer-based foams using cellulose nanofibrils (CNFs) as building blocks. The power of multimodal sSWAXS for multiscale structural characterization of self-assembled CNFs is demonstrated by spatially resolved maps at the macroscale (foam density and porosity), at the nanoscale (foam structural compactness, CNF orientation in the foam walls, and CNF packing state), and at the molecular scale (cellulose crystallite dimensions). Specifically, we compare the impact of freeze-thawing-drying (FTD) fabrication steps, such as static/stirred freezing and thawing in ethanol/water, on foam structural hierarchy spanning from the molecular to the millimeter scale. As such, we demonstrate the potential of X-ray scattering imaging for hierarchical characterization of biopolymers.


Assuntos
Celulose , Celulose/química , Porosidade , Raios X
7.
Soft Matter ; 18(30): 5632-5644, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35861104

RESUMO

The fundamental understanding of the gelation kinetics, stress relaxation and temporal evolution in colloidal filamentous gels is central to many aspects of soft and biological matter, yet a complete description of the inherent complex dynamics of these systems is still missing. By means of photon correlation imaging (PCI), we studied the gelation of amyloid fibril solutions, chosen as a model filamentous colloid with immediate significance to biology and nanotechnology, upon passage of ions through a semi-permeable membrane. We observed a linear-in-time evolution of the gelation front and rich rearrangement dynamics of the gels, the magnitude and the spatial propagation of which depend on how effectively electrostatic interactions are screened by different ionic strengths. Our analysis confirms the pivotal role of salt concentration in tuning the properties of amyloid gels, and suggests potential routes for explaining the physical mechanisms behind the linear advance of the salt ions.


Assuntos
Coloides , Géis , Íons , Cinética , Eletricidade Estática
8.
Biomacromolecules ; 22(10): 4327-4336, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34533934

RESUMO

Antimicrobial resistance in microorganisms will cause millions of deaths and pose a vast burden on health systems; therefore, alternatives to existing small-molecule antibiotics have to be developed. Lysozyme is an antimicrobial enzyme and has broad-spectrum antimicrobial activity in different aggregated forms. Here, we propose a reductive pathway to obtain colloidally stable amyloid-like worm-shaped lysozyme nanoparticles (worms) from hen egg white lysozyme (HEWL) and compare them to amyloid fibrils made in an acid hydrolysis pathway. The aggregation of HEWL into worms follows strongly pH-dependent kinetics and induces a structural transition from α-helices to ß-sheets. Both HEWL worms and amyloid fibrils show broad-spectrum antimicrobial activity against the bacteria Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative), and the fungus Candida albicans. The colloidal stability of the worms allows the determination of minimum inhibitory concentrations, which are lower than that for native HEWL in the case of S. aureus. Overall, amyloid fibrils have the strongest antimicrobial effect, likely due to the increased positive charge compared to native HEWL. The structural and functional characterizations of HEWL worms and amyloids investigated herein are critical for understanding the detailed mechanisms of antimicrobial activity and opens up new avenues for the design of broad-spectrum antimicrobial materials for use in various applications.


Assuntos
Muramidase , Staphylococcus aureus , Amiloide , Antibacterianos/farmacologia , Escherichia coli
9.
Biomacromolecules ; 22(11): 4681-4690, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34696590

RESUMO

In recent years, water pollution has developed into a severe environmental and public health problem due to rapid urbanization and industrialization, especially in some developing countries. Finding solutions to tackle water pollution is urgently required and is of global importance. Currently, a range of water treatment methods are available; however, a water remediation process that is simple, inexpensive, eco-friendly, and effective for the removal of pollutants down to ppm/ppb concentrations has long been sought after. Herein, we describe a novel approach using fungal melanin for developing melanized-cationic cellulose nanofiber (melanized-C-CNF) foams that can successfully remove pollutants in water systems. The foam can be recycled several times while retaining its adsorption/desorption property, indicating high practicability for adsorbing the cationic dye crystal violet. This work highlights the opportunity to combine both the advanced features of sustainable polymers such as cellulose and the unique properties of fungal melanin to manufacture biohybrid composites for water purification.


Assuntos
Nanofibras , Poluentes Químicos da Água , Purificação da Água , Celulose , Corantes
10.
Soft Matter ; 17(6): 1692-1700, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33393584

RESUMO

The formation of viscoelastic networks at fluid interfaces by globular proteins is essential in many industries, scientific disciplines, and biological processes. However, the effect of the oil phase on the structural transitions of proteins, network formation, and layer strength at fluid interfaces has received little attention. Herein, we present a comprehensive study on the effect of oil polarity on globular protein networks. The formation dynamics and mechanical properties of the interfacial networks of three different globular proteins (lysozyme, ß-lactoglobulin, and bovine serum albumin) were studied with interfacial shear and dilatational rheometry. Furthermore, the degree of protein unfolding at the interfaces was evaluated by subsequent injection of disulfide bonds reducing dithiothreitol. Finally, we measured the interfacial layer thickness and protein immersion into the oil phase with neutron reflectometry. We found that oil polarity significantly affects the network formation, the degree of interfacial protein unfolding, interfacial protein location, and the resulting network strength. These results allow predicting emulsion stabilization of proteins, tailoring interfacial layers with desired mechanical properties, and retaining the protein structure and functionality upon adsorption.


Assuntos
Lactoglobulinas , Água , Adsorção , Muramidase , Soroalbumina Bovina
11.
Biomacromolecules ; 21(12): 5139-5147, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33253535

RESUMO

In modern society, there is a constant need for developing reliable, sustainable, and cost-effective antibacterial materials. Here, we investigate the preparation of cellulose nanocrystal (CNC)-lysozyme composite films via the well-established method of evaporation-induced self-assembly. We consider the effects of lysozyme concentration and aggregation state (native lysozyme, lysozyme amyloid fibers, and sonicated lysozyme amyloid fibers) on suspension aggregation and film-forming ability. Although at higher lysozyme loading levels (ca. 10 wt %), composite films lost their characteristic chiral nematic structuring, these films demonstrated improved mechanical properties and antibacterial activity with respect to CNC-only films, regardless of lysozyme aggregation state. We anticipate that the results presented herein could also contribute to the preparation of other CNC-protein-based materials, including films, hydrogels, and aerogels, with improved mechanical performance and antibacterial activity.


Assuntos
Celulose , Nanopartículas , Muramidase
12.
Biomacromolecules ; 20(12): 4574-4580, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31714073

RESUMO

Particles of biological origin are of increasing interest for the Pickering stabilization of biocompatible and environmentally friendly foams and emulsions. Cellulose nanofibrils (CNFs) are readily employed in that respect; however, the underlying mechanisms of interfacial stabilization remain widely unknown. For instance, it has not been resolved why CNFs are unable to stabilize foams while efficiently stabilizing emulsions. Here, we produce CNFs with varying contour lengths and charge densities to investigate their behavior at the air-water phase boundary. CNFs adsorbing at the air-water interface reduce surface tension and form interfacial layers with high viscoelasticity, which are attributed to the thermodynamic and kinetic stability of CNF-stabilized colloids, respectively. CNF adsorption is accelerated and higher surface pressures are attained at lower charge densities, indicating that CNF surface charges limit both adsorption and surface coverage. CNFs form monolayers with ∼40% coverage and are primarily wetted by the aqueous phase indicating a contact angle <90°, as demonstrated by neutron reflectometry. The low contact angle at the air-water interface is energetically unfavorable for adsorbed CNFs, which is proposed as a potential explanation why CNFs show poor foaming capacity.


Assuntos
Celulose/química , Nanofibras/química , Coloides , Tensão Superficial
13.
Biomacromolecules ; 20(3): 1288-1296, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30673281

RESUMO

Cellulose nanofibrils (CNFs) are a renewable and facile to produce nanomaterial that recently gained a lot of attention in soft material research. The nanostructural properties of the fibrils largely determine their self-organizing functionalities, and the ability to tune the CNF nanostructure through control of the processing parameters is therefore crucial for developing new applications. In this study, we systematically altered the CNF production parameters (i.e., variation in cellulose source, chemical, and mechanical treatment) to observe their impact on the nanostructural properties of the resulting fibrils. Atomic force microscopy (AFM) allowed detailed topological examination of individual CNFs to elucidate fibril properties such as contour length, kink distribution and the right-handed twist periodicity of individual fibrils. Statistical analysis revealed a large dependency of the fibril properties on the industrial treatment of the cellulose source material. Our results furthermore confirm that the average charge density of the fibrils regulates both contour length and twist periodicity and, thus, has a very strong impact on the final morphology of CNFs. These results provide a route to tune the detailed nanostructure of CNFs with potential impact on the self-organization of these biological colloids and their optimal use in new nanomaterials.


Assuntos
Celulose/química , Nanofibras/química , Microscopia de Força Atômica , Propriedades de Superfície
14.
Angew Chem Int Ed Engl ; 57(26): 7580-7608, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29316086

RESUMO

Biopolymer aerogels were among the first aerogels produced, but only in the last decade has research on biopolymer and biopolymer-composite aerogels become popular, motivated by sustainability arguments, their unique and tunable properties, and ease of functionalization. Biopolymer aerogels and open-cell foams have great potential for classical aerogel applications such as thermal insulation, as well as emerging applications in filtration, oil-water separation, CO2 capture, catalysis, and medicine. The biopolymer aerogel field today is driven forward by empirical materials discovery at the laboratory scale, but requires a firmer theoretical basis and pilot studies to close the gap to market. This Review includes a database with over 3800 biopolymer aerogel properties, evaluates the state of the biopolymer aerogel field, and critically discusses the scientific, technological, and commercial barriers to the commercialization of these exciting materials.


Assuntos
Biopolímeros/química , Géis/química , Bases de Dados de Compostos Químicos
15.
Langmuir ; 33(38): 9772-9780, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28853581

RESUMO

Nanocellulose (NC) suspensions can form rigid volume-spanning arrested states (VASs) at very low volume fractions. The transition from a free-flowing dispersion to a VAS can be the result of either an increase in particle concentration or a reduction in interparticle repulsion. In this work, the concentration-induced transition has been studied with a special focus on the influence of the particle aspect ratio and surface charge density, and an attempt is made to classify these VASs. The results show that for these types of systems two general states can be identified: glasses and gels. These NC suspensions had threshold concentrations inversely proportional to the particle aspect ratio. This dependence indicates that the main reason for the transition is a mobility constraint that, together with the reversibility of the transition, classifies the VASs as colloidal glasses. If the interparticle repulsion is reduced, then the glasses can transform into gels. Thus, depending on the preparation route, either soft and reversible glasses or stiff and irreversible gels can be formed.

16.
Biomacromolecules ; 18(9): 2858-2865, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28817771

RESUMO

Amyloid fibrils prepared from ß-lactoglobulin were used to form freeze-dried and cross-linked aerogels. By varying the fibril concentration and freezing gradient, it was possible to control the pore structure and elastic modulus of the aerogels within one order of magnitude from ∼20 to ∼200 kPa. Using butane tetracarboxylic acid as cross-linker, these aerogels maintained their monolithic shape under aqueous conditions, displaying elastic behavior and a modulus in the range of ∼4-40 kPa. When explored as scaffolds for cell growth, the amyloid fibril aerogels demonstrated biocompatibility and led to the successful penetration and permeation of two epithelial cell lines (Caco-2 and HT29) throughout the scaffold. These soft, elastic, and water-stable biomaterials expand the scope of amyloid fibril aerogels, making them suitable for wet-state applications such as heterogeneous catalysis, purification membranes, and 3D matrices for cell growth.


Assuntos
Amiloide/química , Proliferação de Células/efeitos dos fármacos , Hidrogéis/química , Alicerces Teciduais/química , Células CACO-2 , Ácidos Carboxílicos/química , Reagentes de Ligações Cruzadas/química , Cristalização , Módulo de Elasticidade , Células HT29 , Humanos , Hidrogéis/farmacologia , Gelo , Lactoglobulinas/química , Alicerces Teciduais/efeitos adversos
17.
Langmuir ; 32(2): 442-50, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26684549

RESUMO

The structural properties and aggregation behavior of carboxymethylated cellulose nanocrystals (CNC-COOH) were analyzed with small angle neutron scattering (SANS), transmission electron microscopy (TEM), atomic force microscopy (AFM), and dynamic light scattering (DLS) and compared to sulfuric acid hydrolyzed cellulose nanocrystals (CNC-SO3H). The CNC-COOH system, prepared from single carboxymethylated cellulose nanofibrils, was shown to laterally aggregate into 2D-stacks that were stable both in bulk solution and when adsorbed to surfaces. CNC-SO3H also showed a 2D aggregate structure with similar cross sectional dimensions (a width to height ratio of 8) as CNC-COOH, but a factor of 2 shorter length. SANS and DLS revealed a reversible ordering of the 2D aggregates under semidilute conditions, and a structure peak was observed for both systems. This indicates an early stage of liquid crystalline arrangement of the crystal aggregates, at concentrations below those assessed using birefringence or polarized optical microscopy.


Assuntos
Carboximetilcelulose Sódica/química , Nanopartículas/química , Birrefringência , Floculação , Hidrólise , Nanopartículas/ultraestrutura , Imagem Óptica , Ácidos Sulfúricos/química , Viscosidade
18.
Adv Sci (Weinh) ; 11(19): e2400403, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38483033

RESUMO

Improving interface connectivity of magnetic nanoparticles in carbon aerogels is crucial, yet challenging for assembling lightweight, elastic, high-performance, and multifunctional carbon architectures. Here, an in situ growth strategy to achieve high dispersion of metal-organic frameworks (MOFs)-anchored cellulose nanofibrils to enhance the interface connection quality is proposed. Followed by a facile freeze-casting and carbonization treatment, sustainable biomimetic porous carbon aerogels with highly dispersed and closely connected MOF-derived magnetic nano-capsules are fabricated. Thanks to the tight interface bonding of nano-capsule microstructure, these aerogels showcase remarkable mechanical robustness and flexibility, tunable electrical conductivity and magnetization intensity, and excellent electromagnetic wave absorption performance. Achieving a reflection loss of -70.8 dB and a broadened effective absorption bandwidth of 6.0 GHz at a filling fraction of merely 2.2 wt.%, leading to a specific reflection loss of -1450 dB mm-1, surpassing all carbon-based aerogel absorbers so far reported. Meanwhile, the aerogel manifests high magnetic sensing sensibility and excellent thermal insulation. This work provides an extendable in situ growth strategy for synthesizing MOF-modified cellulose nanofibril structures, thereby promoting the development of high-value-added multifunctional magnetic carbon aerogels for applications in electromagnetic compatibility and protection, thermal management, diversified sensing, Internet of Things devices, and aerospace.

19.
Nanoscale ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952181

RESUMO

Biopolymer-based functional materials are essential for reducing the carbon footprint and providing high-quality lightweight materials suitable for packaging and thermal insulation. Here, cellulose nanocrystals (CNCs) were efficiently upcycled from post-consumer cotton clothing by TEMPO-mediated oxidation and HCl hydrolysis with a yield of 62% and combined with wood cellulose nanofibrils (CNFs) to produce anisotropic foams by unidirectional freeze-casting followed by freeze drying (FD) or supercritical-drying (SCD). Unidirectional freeze-casting resulted in foams with aligned macropores irrespective of the drying method, but the particle packing in the foam wall was significantly affected by how the ice was removed. The FD foams showed tightly packed and aligned CNC and CNF particles while the SCD foams displayed a more network-like structure in the foam walls. The SCD compared to FD foams had more pores smaller than 300 nm and higher specific surface area but they were more susceptible to moisture-induced shrinkage, especially at relative humidities (RH) > 50%. The FD and SCD foams displayed low radial thermal conductivity, and the FD foams displayed a higher mechanical strength and stiffness in compression in the direction of the aligned particles. Better understanding how drying influences the structural, thermal, mechanical and moisture-related properties of foams based on repurposed cotton is important for the development of sustainable nanostructured materials for various applications.

20.
Adv Sci (Weinh) ; 11(24): e2307921, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477181

RESUMO

Additive manufacturing (AM) is widely recognized as a versatile tool for achieving complex geometries and customized functionalities in designed materials. However, the challenge lies in selecting an appropriate AM method that simultaneously realizes desired microstructures and macroscopic geometrical designs in a single sample. This study presents a direct ink writing method for 3D printing intricate, high-fidelity macroscopic cellulose aerogel forms. The resulting aerogels exhibit tunable anisotropic mechanical and thermal characteristics by incorporating fibers of different length scales into the hydrogel inks. The alignment of nanofibers significantly enhances mechanical strength and thermal resistance, leading to higher thermal conductivities in the longitudinal direction (65 mW m-1 K-1) compared to the transverse direction (24 mW m-1 K-1). Moreover, the rehydration of printed cellulose aerogels for biomedical applications preserves their high surface area (≈300 m2 g-1) while significantly improving mechanical properties in the transverse direction. These printed cellulose aerogels demonstrate excellent cellular viability (>90% for NIH/3T3 fibroblasts) and exhibit robust antibacterial activity through in situ-grown silver nanoparticles.


Assuntos
Celulose , Impressão Tridimensional , Celulose/química , Camundongos , Animais , Células NIH 3T3 , Géis/química , Nanofibras/química , Prata/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA