Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
N Engl J Med ; 382(9): 835-844, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32101665

RESUMO

Mutations in VHL, which encodes von Hippel-Lindau tumor suppressor (VHL), are associated with divergent diseases. We describe a patient with marked erythrocytosis and prominent mitochondrial alterations associated with a severe germline VHL deficiency due to homozygosity for a novel synonymous mutation (c.222C→A, p.V74V). The condition is characterized by early systemic onset and differs from Chuvash polycythemia (c.598C→T) in that it is associated with a strongly reduced growth rate, persistent hypoglycemia, and limited exercise capacity. We report changes in gene expression that reprogram carbohydrate and lipid metabolism, impair muscle mitochondrial respiratory function, and uncouple oxygen consumption from ATP production. Moreover, we identified unusual intermitochondrial connecting ducts. Our findings add unexpected information on the importance of the VHL-hypoxia-inducible factor (HIF) axis to human phenotypes. (Funded by Associazione Italiana Ricerca sul Cancro and others.).


Assuntos
Mutação em Linhagem Germinativa , Transtornos do Crescimento/genética , Hipoglicemia/genética , Fator 1 Induzível por Hipóxia/deficiência , Mitocôndrias/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Expressão Gênica , Crescimento/genética , Humanos , Masculino , Metaboloma/genética , Metaboloma/fisiologia , Síndrome , Adulto Jovem
2.
BMC Biol ; 19(1): 265, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911556

RESUMO

BACKGROUND: Tissue hypoxia is a key feature of several endemic hepatic diseases, including alcoholic and non-alcoholic fatty liver disease, and organ failure. Hypoxia imposes a severe metabolic challenge on the liver, potentially disrupting its capacity to carry out essential functions including fuel storage and the integration of lipid metabolism at the whole-body level. Mitochondrial respiratory function is understood to be critical in mediating the hepatic hypoxic response, yet the time-dependent nature of this response and the role of the respiratory chain in this remain unclear. RESULTS: Here, we report that hepatic respiratory capacity is enhanced following short-term exposure to hypoxia (2 days, 10% O2) and is associated with increased abundance of the respiratory chain supercomplex III2+IV and increased cardiolipin levels. Suppression of this enhanced respiratory capacity, achieved via mild inhibition of mitochondrial complex III, disrupted metabolic homeostasis. Hypoxic exposure for 2 days led to accumulation of plasma and hepatic long chain acyl-carnitines. This was observed alongside depletion of hepatic triacylglycerol species with total chain lengths of 39-53 carbons, containing palmitic, palmitoleic, stearic, and oleic acids, which are associated with de novo lipogenesis. The changes to hepatic respiratory capacity and lipid metabolism following 2 days hypoxic exposure were transient, becoming resolved after 14 days in line with systemic acclimation to hypoxia and elevated circulating haemoglobin concentrations. CONCLUSIONS: The liver maintains metabolic homeostasis in response to shorter term hypoxic exposure through transient enhancement of respiratory chain capacity and alterations to lipid metabolism. These findings may have implications in understanding and treating hepatic pathologies associated with hypoxia.


Assuntos
Metabolismo dos Lipídeos , Fígado , Homeostase , Humanos , Hipóxia/metabolismo , Lipogênese , Fígado/metabolismo
3.
FASEB J ; 33(6): 7563-7577, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30870003

RESUMO

Dietary inorganic nitrate prevents aspects of cardiac mitochondrial dysfunction induced by hypoxia, although the mechanism is not completely understood. In both heart and skeletal muscle, nitrate increases fatty acid oxidation capacity, and in the latter case, this involves up-regulation of peroxisome proliferator-activated receptor (PPAR)α expression. Here, we investigated whether dietary nitrate modifies mitochondrial function in the hypoxic heart in a PPARα-dependent manner. Wild-type (WT) mice and mice without PPARα (Ppara-/-) were given water containing 0.7 mM NaCl (control) or 0.7 mM NaNO3 for 35 d. After 7 d, mice were exposed to normoxia or hypoxia (10% O2) for the remainder of the study. Mitochondrial respiratory function and metabolism were assessed in saponin-permeabilized cardiac muscle fibers. Environmental hypoxia suppressed mass-specific mitochondrial respiration and additionally lowered the proportion of respiration supported by fatty acid oxidation by 18% (P < 0.001). This switch away from fatty acid oxidation was reversed by nitrate treatment in hypoxic WT but not Ppara-/- mice, indicating a PPARα-dependent effect. Hypoxia increased hexokinase activity by 33% in all mice, whereas lactate dehydrogenase activity increased by 71% in hypoxic WT but not Ppara-/- mice. Our findings indicate that PPARα plays a key role in mediating cardiac metabolic remodeling in response to both hypoxia and dietary nitrate supplementation.-Horscroft, J. A., O'Brien, K. A., Clark, A. D., Lindsay, R. T., Steel, A. S., Procter, N. E. K., Devaux, J., Frenneaux, M., Harridge, S. D. R., Murray, A. J. Inorganic nitrate, hypoxia, and the regulation of cardiac mitochondrial respiration-probing the role of PPARα.


Assuntos
Respiração Celular , Hipóxia/metabolismo , Mitocôndrias Cardíacas/metabolismo , Nitratos/metabolismo , PPAR alfa/fisiologia , Animais , Compostos Inorgânicos/administração & dosagem , Compostos Inorgânicos/metabolismo , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Nitratos/administração & dosagem , Fosforilação Oxidativa , PPAR alfa/genética
4.
J Physiol ; 596(1): 47-66, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29071730

RESUMO

KEY POINTS: Transforming growth-factor-ß (TGF-ß) and RhoA/Rho-kinase are independently implicated in the airway hyper-responsiveness associated with asthma, but how these proteins interact is not fully understood. We examined the effects of pre-treatment with TGF-ß on expression and activity of RhoA, Rho-kinase and ARHGEF1, an activator of RhoA, as well as on bradykinin-induced contraction, in airway smooth muscle. TGF-ß enhanced bradykinin-induced RhoA translocation, Rho-kinase-dependent phosphorylation and contraction, but partially suppressed bradykinin-induced RhoA activity (RhoA-GTP content). TGF-ß enhanced the expression of ARHGEF1, while a small interfering RNA against ARHGEF1 and a RhoGEF inhibitor prevented the effects of TGF-ß on RhoA and Rho-kinase activity and contraction, respectively. ARHGEF1 expression was also enhanced in airway smooth muscle from asthmatic patients and ovalbumin-sensitized mice. ARHGEF1 is a key TGF-ß target gene, an important regulator of Rho-kinase activity and therefore a potential therapeutic target for the treatment of asthmatic airway hyper-responsiveness. ABSTRACT: Transforming growth factor-ß (TGF-ß), RhoA/Rho-kinase and Src-family kinases (SrcFK) have independently been implicated in airway hyper-responsiveness, but how they interact to regulate airway smooth muscle contractility is not fully understood. We found that TGF-ß pre-treatment enhanced acute contractile responses to bradykinin (BK) in isolated rat bronchioles, and inhibitors of RhoGEFs (Y16) and Rho-kinase (Y27632), but not the SrcFK inhibitor PP2, prevented this enhancement. In cultured human airway smooth muscle cells (hASMCs), TGF-ß pre-treatment enhanced the protein expression of the Rho guanine nucleotide exchange factor ARHGEF1, MLC20 , MYPT-1 and the actin-severing protein cofilin, but not of RhoA, ROCK2 or c-Src. In hASMCs, acute treatment with BK triggered subcellular translocation of ARHGEF1 and RhoA and enhanced auto-phosphorylation of SrcFK and phosphorylation of MYPT1 and MLC20 , but induced de-phosphorylation of cofilin. TGF-ß pre-treatment amplified the effects of BK on RhoA translocation and MYPT1/MLC20 phosphorylation, but suppressed the effects of BK on RhoA-GTP content, SrcFK auto-phosphorylation and cofilin de-phosphorylation. In hASMCs, an ARHGEF1 small interfering RNA suppressed the effects of BK and TGF-ß on RhoA-GTP content, RhoA translocation and MYPT1 and MLC20 phosphorylation, but minimally influenced the effects of TGF-ß on cofilin expression and phosphorylation. ARHGEF1 expression was also enhanced in ASMCs of asthmatic patients and in lungs of ovalbumin-sensitized mice. Our data indicate that TGF-ß enhances BK-induced contraction, RhoA translocation and Rho-kinase activity in airway smooth muscle largely via ARHGEF1, but independently of SrcFK and total RhoA-GTP content. A role for smooth muscle ARHGEF1 in asthmatic airway hyper-responsiveness is worthy of further investigation.


Assuntos
Asma/fisiopatologia , Contração Muscular , Músculo Liso/fisiologia , Sistema Respiratório/fisiopatologia , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Proteína rhoA de Ligação ao GTP/metabolismo , Adulto , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Músculo Liso/citologia , Músculo Liso/efeitos dos fármacos , Fosforilação , Ratos , Ratos Wistar , Sistema Respiratório/citologia , Sistema Respiratório/efeitos dos fármacos , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Adulto Jovem , Proteína rhoA de Ligação ao GTP/genética
5.
Hypertension ; 81(2): 319-329, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38018457

RESUMO

BACKGROUND: The chronic hypoxia of high-altitude residence poses challenges for tissue oxygen supply and metabolism. Exposure to high altitude during pregnancy increases the incidence of hypertensive disorders of pregnancy and fetal growth restriction and alters placental metabolism. High-altitude ancestry protects against altitude-associated fetal growth restriction, indicating hypoxia tolerance that is genetic in nature. Yet, not all babies are protected and placental pathologies associated with fetal growth restriction occur in some Andean highlanders. METHODS: We examined placental metabolic function in 79 Andeans (18-45 years; 39 preeclamptic and 40 normotensive) living in La Paz, Bolivia (3600-4100 m) delivered by unlabored Cesarean section. Using a selection-nominated approach, we examined links between putatively adaptive genetic variation and phenotypes related to oxygen delivery or placental metabolism. RESULTS: Mitochondrial oxidative capacity was associated with fetal oxygen delivery in normotensive but not preeclamptic placenta and was also suppressed in term preeclamptic pregnancy. Maternal haplotypes in or within 200 kb of selection-nominated genes were associated with lower placental mitochondrial respiratory capacity (PTPRD [protein tyrosine phosphatase receptor-δ]), lower maternal plasma erythropoietin (CPT2 [carnitine palmitoyl transferase 2], proopiomelanocortin, and DNMT3 [DNA methyltransferase 3]), and lower VEGF (vascular endothelial growth factor) in umbilical venous plasma (TBX5 [T-box transcription factor 5]). A fetal haplotype within 200 kb of CPT2 was associated with increased placental mitochondrial complex II capacity, placental nitrotyrosine, and GLUT4 (glucose transporter type 4) protein expression. CONCLUSIONS: Our findings reveal novel associations between putatively adaptive gene regions and phenotypes linked to oxygen delivery and placental metabolic function in highland Andeans, suggesting that such effects may be of genetic origin. Our findings also demonstrate maladaptive metabolic mechanisms in the context of preeclampsia, including dysregulation of placental oxygen consumption.


Assuntos
Placenta , Pré-Eclâmpsia , Humanos , Gravidez , Feminino , Placenta/metabolismo , Cesárea , Retardo do Crescimento Fetal , Fator A de Crescimento do Endotélio Vascular/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Fenótipo , Genômica
6.
Sci Adv ; 10(6): eadj5661, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335297

RESUMO

Hypoxia-inducible factor pathway genes are linked to adaptation in both human and nonhuman highland species. EPAS1, a notable target of hypoxia adaptation, is associated with relatively lower hemoglobin concentration in Tibetans. We provide evidence for an association between an adaptive EPAS1 variant (rs570553380) and the same phenotype of relatively low hematocrit in Andean highlanders. This Andean-specific missense variant is present at a modest frequency in Andeans and absent in other human populations and vertebrate species except the coelacanth. CRISPR-base-edited human cells with this variant exhibit shifts in hypoxia-regulated gene expression, while metabolomic analyses reveal both genotype and phenotype associations and validation in a lowland population. Although this genocopy of relatively lower hematocrit in Andean highlanders parallels well-replicated findings in Tibetans, it likely involves distinct pathway responses based on a protein-coding versus noncoding variants, respectively. These findings illuminate how unique variants at EPAS1 contribute to the same phenotype in Tibetans and a subset of Andean highlanders despite distinct evolutionary trajectories.


Assuntos
Adaptação Fisiológica , Altitude , Hematócrito , População da América do Sul , Humanos , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , População do Leste Asiático , Hipóxia/genética , Hipóxia/metabolismo , Mutação de Sentido Incorreto/genética , População da América do Sul/genética
7.
Life (Basel) ; 12(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35330188

RESUMO

Hypoxia triggers complex inter- and intracellular signals that regulate tissue oxygen (O2) homeostasis, adjusting convective O2 delivery and utilization (i.e., metabolism). Human populations have been exposed to high-altitude hypoxia for thousands of years and, in doing so, have undergone natural selection of multiple gene regions supporting adaptive traits. Some of the strongest selection signals identified in highland populations emanate from hypoxia-inducible factor (HIF) pathway genes. The HIF pathway is a master regulator of the cellular hypoxic response, but it is not the only regulatory pathway under positive selection. For instance, regions linked to the highly conserved Notch signaling pathway are also top targets, and this pathway is likely to play essential roles that confer hypoxia tolerance. Here, we explored the importance of the Notch pathway in mediating the cellular hypoxic response. We assessed transcriptional regulation of the Notch pathway, including close cross-talk with HIF signaling, and its involvement in the mediation of angiogenesis, cellular metabolism, inflammation, and oxidative stress, relating these functions to generational hypoxia adaptation.

8.
Front Physiol ; 13: 885295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035495

RESUMO

The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.

9.
Redox Biol ; 41: 101907, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33667994

RESUMO

BACKGROUND: Numerous pathologies result in multiple-organ failure, which is thought to be a direct consequence of compromised cellular bioenergetic status. Neither the nature of this phenotype nor its relevance to survival are well understood, limiting the efficacy of modern life-support. METHODS: To explore the hypothesis that survival from critical illness relates to changes in cellular bioenergetics, we combined assessment of mitochondrial respiration with metabolomic, lipidomic and redox profiling in skeletal muscle and blood, at multiple timepoints, in 21 critically ill patients and 12 reference patients. RESULTS: We demonstrate an end-organ cellular phenotype in critical illness, characterized by preserved total energetic capacity, greater coupling efficiency and selectively lower capacity for complex I and fatty acid oxidation (FAO)-supported respiration in skeletal muscle, compared to health. In survivors, complex I capacity at 48 h was 27% lower than in non-survivors (p = 0.01), but tended to increase by day 7, with no such recovery observed in non-survivors. By day 7, survivors' FAO enzyme activity was double that of non-survivors (p = 0.048), in whom plasma triacylglycerol accumulated. Increases in both cellular oxidative stress and reductive drive were evident in early critical illness compared to health. Initially, non-survivors demonstrated greater plasma total antioxidant capacity but ultimately higher lipid peroxidation compared to survivors. These alterations were mirrored by greater levels of circulating total free thiol and nitrosated species, consistent with greater reductive stress and vascular inflammation, in non-survivors compared to survivors. In contrast, no clear differences in systemic inflammatory markers were observed between the two groups. CONCLUSION: Critical illness is associated with rapid, specific and coordinated alterations in the cellular respiratory machinery, intermediary metabolism and redox response, with different trajectories in survivors and non-survivors. Unravelling the cellular and molecular foundation of human resilience may enable the development of more effective life-support strategies.


Assuntos
Estado Terminal , Metabolismo Energético , Humanos , Mitocôndrias/metabolismo , Oxirredução , Estresse Oxidativo , Sobreviventes
10.
Front Cardiovasc Med ; 7: 602183, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363221

RESUMO

The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19) has led to 47 m infected cases and 1. 2 m (2.6%) deaths. A hallmark of more severe cases of SARS-CoV-2 in patients with acute respiratory distress syndrome (ARDS) appears to be a virally-induced over-activation or unregulated response of the immune system, termed a "cytokine storm," featuring elevated levels of pro-inflammatory cytokines such as IL-2, IL-6, IL-7, IL-22, CXCL10, and TNFα. Whilst the lungs are the primary site of infection for SARS-CoV-2, in more severe cases its effects can be detected in multiple organ systems. Indeed, many COVID-19 positive patients develop cardiovascular complications, such as myocardial injury, myocarditis, cardiac arrhythmia, and thromboembolism, which are associated with higher mortality. Drug and cell therapies targeting immunosuppression have been suggested to help combat the cytokine storm. In particular, mesenchymal stromal cells (MSCs), owing to their powerful immunomodulatory ability, have shown promise in early clinical studies to avoid, prevent or attenuate the cytokine storm. In this review, we will discuss the mechanistic underpinnings of the cytokine storm on the cardiovascular system, and how MSCs potentially attenuate the damage caused by the cytokine storm induced by COVID-19. We will also address how MSC transplantation could alleviate the long-term complications seen in some COVID-19 patients, such as improving tissue repair and regeneration.

11.
J Gerontol A Biol Sci Med Sci ; 75(8): 1481-1487, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-31942994

RESUMO

The age-associated reduction in muscle mass is well characterized; however, less is known regarding the mechanisms responsible for the decline in oxidative capacity also observed with advancing age. The purpose of the current study was therefore to compare mitochondrial gene expression and protein content between young and old recreationally active, and older highly active individuals. Muscle biopsies were obtained from the vastus lateralis of young males (YG: 22 ± 3 years) and older (OG: 67 ± 2 years) males not previously engaged in formal exercise and older male master cyclists (OT: 65 ± 5 years) who had undertaken cycling exercise for 32 ± 17 years. Comparison of gene expression between YG, OG, and OT groups revealed greater expression of mitochondrial-related genes, namely, electron transport chain (ETC) complexes II, III, and IV (p < .05) in OT compared with YG and OG. Gene expression of mitofusion (MFN)-1/2, mitochondrial fusion genes, was greater in OT compared with OG (p < .05). Similarly, protein content of ETC complexes I, II, and IV was significantly greater in OT compared with both YG and OG (p < .001). Protein content of peroxisome proliferator-activated receptor gamma, coactivator 1 α (PGC-1α), was greater in OT compared with YG and OG (p < .001). Our results suggest that the aging process per se is not associated with a decline in gene expression and protein content of ETC complexes. Mitochondrial-related gene expression and protein content are substantially greater in OT, suggesting that exercise-mediated increases in mitochondrial content can be maintained into later life.


Assuntos
Exercício Físico , Expressão Gênica , Mitocôndrias Musculares/metabolismo , Músculo Quadríceps/metabolismo , Acil-CoA Desidrogenases/genética , Acil-CoA Desidrogenases/metabolismo , Idoso , Biomarcadores/metabolismo , Biópsia , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Músculo Quadríceps/patologia , RNA Mensageiro/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Adulto Jovem
12.
Acta Physiol (Oxf) ; 228(3): e13430, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31840389

RESUMO

Obesity-induced insulin resistance and type 2 diabetes mellitus can ultimately result in various complications, including diabetic cardiomyopathy. In this case, cardiac dysfunction is characterized by metabolic disturbances such as impaired glucose oxidation and an increased reliance on fatty acid (FA) oxidation. Mitochondrial dysfunction has often been associated with the altered metabolic function in the diabetic heart, and may result from FA-induced lipotoxicity and uncoupling of oxidative phosphorylation. In this review, we address the metabolic changes in the diabetic heart, focusing on the loss of metabolic flexibility and cardiac mitochondrial function. We consider the alterations observed in mitochondrial substrate utilization, bioenergetics and dynamics, and highlight new areas of research which may improve our understanding of the cause and effect of cardiac mitochondrial dysfunction in diabetes. Finally, we explore how lifestyle (nutrition and exercise) and pharmacological interventions can prevent and treat metabolic and mitochondrial dysfunction in diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Resistência à Insulina , Animais , Diabetes Mellitus Tipo 2/patologia , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/patologia , Ácidos Graxos/metabolismo , Humanos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia
13.
Biochim Biophys Acta Mol Basis Dis ; 1865(4): 844-853, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30055294

RESUMO

Hypoxia is a feature of many disease states where convective oxygen delivery is impaired, and is known to suppress oxidative metabolism. Acclimation to hypoxia thus requires metabolic remodelling, however hypoxia tolerance may be aided by dietary nitrate supplementation. Nitrate improves tissue oxygenation and has been shown to modulate skeletal muscle tissue metabolism via transcriptional changes, including through the activation of peroxisome proliferator-activated receptor alpha (PPARα), a master regulator of fat metabolism. Here we investigated whether nitrate supplementation protects skeletal muscle mitochondrial function in hypoxia and whether PPARα is required for this effect. Wild-type and PPARα knockout (PPARα-/-) mice were supplemented with sodium nitrate via the drinking water or sodium chloride as control, and exposed to environmental hypoxia (10% O2) or normoxia for 4 weeks. Hypoxia suppressed mitochondrial respiratory function in mouse soleus, an effect partially alleviated through nitrate supplementation, but occurring independently of PPARα. Specifically, hypoxia resulted in 26% lower mass specific fatty acid-supported LEAK respiration and 23% lower pyruvate-supported oxidative phosphorylation capacity. Hypoxia also resulted in 24% lower citrate synthase activity in mouse soleus, possibly indicating a loss of mitochondrial content. These changes were not seen, however, in hypoxic mice when supplemented with dietary nitrate, indicating a nitrate dependent preservation of mitochondrial function. Moreover, this was observed in both wild-type and PPARα-/- mice. Our results support the notion that nitrate supplementation can aid hypoxia tolerance and indicate that nitrate can exert effects independently of PPARα.


Assuntos
Hipóxia/metabolismo , Músculo Esquelético/efeitos dos fármacos , Nitratos/farmacologia , PPAR alfa/metabolismo , Animais , Células Cultivadas , Citrato (si)-Sintase/metabolismo , Suplementos Nutricionais , Ácidos Graxos/metabolismo , Masculino , Camundongos , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Nitratos/administração & dosagem
14.
Sci Rep ; 9(1): 2297, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783167

RESUMO

At high altitude oxygen delivery to the tissues is impaired leading to oxygen insufficiency (hypoxia). Acclimatisation requires adjustment to tissue metabolism, the details of which remain incompletely understood. Here, metabolic responses to progressive environmental hypoxia were assessed through metabolomic and lipidomic profiling of human plasma taken from 198 human participants before and during an ascent to Everest Base Camp (5,300 m). Aqueous and lipid fractions of plasma were separated and analysed using proton (1H)-nuclear magnetic resonance spectroscopy and direct infusion mass spectrometry, respectively. Bayesian robust hierarchical regression revealed decreasing isoleucine with ascent alongside increasing lactate and decreasing glucose, which may point towards increased glycolytic rate. Changes in the lipid profile with ascent included a decrease in triglycerides (48-50 carbons) associated with de novo lipogenesis, alongside increases in circulating levels of the most abundant free fatty acids (palmitic, linoleic and oleic acids). Together, this may be indicative of fat store mobilisation. This study provides the first broad metabolomic account of progressive exposure to environmental hypobaric hypoxia in healthy humans. Decreased isoleucine is of particular interest as a potential contributor to muscle catabolism observed with exposure to hypoxia at altitude. Substantial changes in lipid metabolism may represent important metabolic responses to sub-acute exposure to environmental hypoxia.


Assuntos
Lipidômica/métodos , Metabolômica/métodos , Adulto , Teorema de Bayes , Peso Corporal/fisiologia , Feminino , Humanos , Metabolismo dos Lipídeos/fisiologia , Masculino , Pessoa de Meia-Idade , Oxigênio/metabolismo , Triglicerídeos/sangue
15.
Physiol Rep ; 6(5)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29521037

RESUMO

An insufficient supply of oxygen to the tissues (hypoxia), as is experienced upon high-altitude exposure, elicits physiological acclimatization mechanisms alongside metabolic remodeling. Details of the integrative adaptive processes in response to chronic hypobaric hypoxic exposure remain to be sufficiently investigated. In this small applied field study, subjects (n = 5, male, age 28-54 years) undertook a 40 week Antarctica expedition in the winter months, which included 24 weeks residing above 2500 m. Measurements taken pre- and postexpedition revealed alterations to glucose and fatty acid resonances within the serum metabolic profile, a 7.8 (±3.6)% increase in respiratory exchange ratio measured during incremental exercise (area under curve, P > 0.01, mean ± SD) and a 2.1(±0.8) % decrease in fat tissue (P < 0.05) postexpedition. This was accompanied by an 11.6 (±1.9) % increase (P > 0.001) in VO2 max corrected to % lean mass postexpedition. In addition, spine bone mineral density and lung function measures were identified as novel parameters of interest. This study provides, an in-depth characterization of the responses to chronic hypobaric hypoxic exposure in one of the most hostile environments on Earth.


Assuntos
Aclimatação , Doença da Altitude/fisiopatologia , Temperatura Baixa , Expedições , Adiposidade , Adulto , Doença da Altitude/metabolismo , Regiões Antárticas , Glicemia/metabolismo , Exercício Físico , Ambientes Extremos , Ácidos Graxos/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio , Troca Gasosa Pulmonar
16.
Aging Cell ; 17(2)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29517834

RESUMO

In this study, results are reported from the analyses of vastus lateralis muscle biopsy samples obtained from a subset (n = 90) of 125 previously phenotyped, highly active male and female cyclists aged 55-79 years in regard to age. We then subsequently attempted to uncover associations between the findings in muscle and in vivo physiological functions. Muscle fibre type and composition (ATPase histochemistry), size (morphometry), capillary density (immunohistochemistry) and mitochondrial protein content (Western blot) in relation to age were determined in the biopsy specimens. Aside from an age-related change in capillary density in males (r = -.299; p = .02), no other parameter measured in the muscle samples showed an association with age. However, in males type I fibres and capillarity (p < .05) were significantly associated with training volume, maximal oxygen uptake, oxygen uptake kinetics and ventilatory threshold. In females, the only association observed was between capillarity and training volume (p < .05). In males, both type II fibre proportion and area (p < .05) were associated with peak power during sprint cycling and with maximal rate of torque development during a maximal voluntary isometric contraction. Mitochondrial protein content was not associated with any cardiorespiratory parameter in either males or females (p > .05). We conclude in this highly active cohort, selected to mitigate most of the effects of inactivity, that there is little evidence of age-related changes in the properties of VL muscle across the age range studied. By contrast, some of these muscle characteristics were correlated with in vivo physiological indices.


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/fisiopatologia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Exercício Físico/psicologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
Extrem Physiol Med ; 4: 7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25949809

RESUMO

Humans are capable of survival in a remarkable range of environments, including the extremes of temperature and altitude as well as zero gravity. Investigation into physiological function in response to such environmental stresses may help further our understanding of human (patho-) physiology both at a systems level and in certain disease states, making it a highly relevant field of study. This review focuses on the application of metabolomics in assessing acclimatisation to these states, particularly the insights this approach can provide into mitochondrial function. It includes an overview of metabolomics and the associated analytical tools and also suggests future avenues of research.

18.
PLoS One ; 10(12): e0144504, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26698120

RESUMO

BACKGROUND: Dietary nitrate supplementation can enhance exercise performance in healthy people, but it is not clear if it is beneficial in COPD. We investigated the hypotheses that acute nitrate dosing would improve exercise performance and reduce the oxygen cost of submaximal exercise in people with COPD. METHODS: We performed a double-blind, placebo-controlled, cross-over single dose study. Subjects were randomised to consume either nitrate-rich beetroot juice (containing 12.9 mmoles nitrate) or placebo (nitrate-depleted beetroot juice) 3 hours prior to endurance cycle ergometry, performed at 70% of maximal workload assessed by a prior incremental exercise test. After a minimum washout period of 7 days the protocol was repeated with the crossover beverage. RESULTS: 21 subjects successfully completed the study (age 68 ± 7 years; BMI 25.2 ± 5.5 kg/m2; FEV1 percentage predicted 50.1 ± 21.6%; peak VO2 18.0 ± 5.9 ml/min/kg). Resting diastolic blood pressure fell significantly with nitrate supplementation compared to placebo (-7 ± 8 mmHg nitrate vs. -1 ± 8 mmHg placebo; p = 0.008). Median endurance time did not differ significantly; nitrate 5.65 (3.90-10.40) minutes vs. placebo 6.40 (4.01-9.67) minutes (p = 0.50). However, isotime oxygen consumption (VO2) was lower following nitrate supplementation (16.6 ± 6.0 ml/min/kg nitrate vs. 17.2 ± 6.0 ml/min/kg placebo; p = 0.043), and consequently nitrate supplementation caused a significant lowering of the amplitude of the VO2-percentage isotime curve. CONCLUSIONS: Acute administration of oral nitrate did not enhance endurance exercise performance; however the observation that beetroot juice caused reduced oxygen consumption at isotime suggests that further investigation of this treatment approach is warranted, perhaps targeting a more hypoxic phenotype. TRIAL REGISTRATION: ISRCTN Registry ISRCTN66099139.


Assuntos
Suplementos Nutricionais , Terapia por Exercício , Nitratos/administração & dosagem , Doença Pulmonar Obstrutiva Crônica/terapia , Idoso , Estudos Cross-Over , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Consumo de Oxigênio , Projetos Piloto , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA