Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Analyst ; 145(11): 3899-3908, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32297889

RESUMO

The enzyme isocitrate dehydrogenase 1 (IDH1) catalyzes the conversion of isocitrate to alpha-ketoglutarate (αKG) and has emerged as an important therapeutic target for glioblastoma multiforme (GBM). Current methods for assaying IDH1 remain poorly suited for high-throughput screening of IDH1 antagonists. This paper describes a high-throughput and quantitative assay for IDH1 that is based on the self-assembled monolayers for matrix-assisted laser desorption/ionization-mass spectrometry (SAMDI-MS) method. The assay uses a self-assembled monolayer presenting a hydrazide group that covalently captures the αKG product of IDH1, where it can then be detected by MALDI-TOF mass spectrometry. Co-capture of an isotopically-labeled αKG internal standard allows the αKG concentration to be quantitated. The assay was used to analyze a series of standard αKG solutions and produced minimal error in measured αKG concentration values. The suitability of the assay for high-throughput analysis was evaluated in a 384-sample biochemical IDH1 screen. Cells expressing IDH1 were lysed and the lysate was applied to the monolayer to capture αKG, which was then quantitated using the SAMDI-MS assay. Cells in which IDH1 expression was reduced by small-interfering RNA exhibited a corresponding decrease in αKG concentration as measured by the assay. Application of the assay toward the high-throughput screening of IDH1 inhibitors or knockdown agents may facilitate the discovery of treatments for GBM.


Assuntos
Ensaios Enzimáticos/métodos , Ensaios de Triagem em Larga Escala/métodos , Isocitrato Desidrogenase/análise , Linhagem Celular Tumoral , Humanos , Isocitrato Desidrogenase/química , Isocitratos/química , Ácidos Cetoglutáricos/análise , NADP/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
2.
J Am Chem Soc ; 139(30): 10320-10327, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28689418

RESUMO

This paper describes an assay that can profile the binding of a protein to ligands and can rank the affinities of a library of ligands. The method is based on the enhanced rate of an enzyme-mediated reaction that follows from colocalization of the enzyme and substrate by a protein-ligand interaction. This assay uses a self-assembled monolayer that presents a candidate peptide ligand for a receptor and a peptide substrate for an enzyme. The receptor is prepared as a fusion to the relevant enzyme so that binding of the receptor to the immobilized ligand brings the enzyme to the surface, where it can more rapidly modify its substrate. The extent of conversion of the substrate to product is therefore a measure of the average time the ligand-receptor complex is present and is quantified using the SAMDI mass spectrometry technique. The approach is used to profile the binding of chromodomain proteins to methylated lysine peptides derived from the histone 3 protein. The relative affinities for the peptide ligands found in this work agreed with results from prior studies. Additionally, this work revealed cross-talk interactions whereby phosphorylation of certain residues impaired binding of chromodomains to the peptide ligands. The method presented here, which we term protein interaction by SAMDI (PI-SAMDI), has the advantages that it is applicable to low-affinity interactions because the complexes are not observed directly, but rather leave a "covalent record" of the interaction that is measured with mass spectrometry and because it is compatible with laboratory automation for high-throughput analysis.

3.
Antiviral Res ; 200: 105279, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35278580

RESUMO

The 3-chymotrypsin-like cysteine protease (3CLpro) of severe acute respiratory syndrome conoravirus 2 (SARS-CoV-2) remains a promising therapeutic target to combat COVID-19. Our group recently described a novel duplexed biochemical assay that combines self-assembled monolayers of alkanethiolates on gold with matrix assisted laser desorption ionization (MALDI) time of flight (TOF) mass spectrometry (MS) to simultaneously measure 3CLpro and human rhinovirus 3C protease activities. This study describes applying the assay for the completion of a high-throughput duplexed screen of 300,000 diverse, drug-like small molecules in 3 days. The hits were confirmed and evaluated in dose response analyses against recombinant 3CLpro, HRV3C, and the human Cathepsin L proteases. The 3CLpro specific inhibitors were further assessed for activity in cellular cytotoxicity and anti-viral assays. Structure activity relationship studies informed on structural features required for activity and selectivity to 3CLpro over HRV3C. These results will guide the optimization of 3CLpro selective inhibitors to combat COVID-19 along with antiviral compounds against coronaviruses and rhinoviruses.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Humanos , Espectrometria de Massas , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Rhinovirus
4.
ACS Chem Biol ; 16(1): 205-213, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33314922

RESUMO

Understanding the ligand preferences of epigenetic reader domains enables identification of modification states of chromatin with which these domains associate and can yield insight into recruitment and catalysis of chromatin-acting complexes. However, thorough exploration of the ligand preferences of reader domains is hindered by the limitations of traditional protein-ligand binding assays. Here, we evaluate the binding preferences of the PHD1 domain of histone demethylase KDM5A using the protein interaction by SAMDI (PI-SAMDI) assay, which measures protein-ligand binding in a high-throughput and sensitive manner via binding-induced enhancement in the activity of a reporter enzyme, in combination with fluorescence polarization. The PI-SAMDI assay was validated by confirming its ability to accurately profile the relative binding affinity of a set of well-characterized histone 3 (H3) ligands of PHD1. The assay was then used to assess the affinity of PHD1 for 361 H3 mutant ligands, a select number of which were further characterized by fluorescence polarization. Together, these experiments revealed PHD1's tolerance for H3Q5 mutations, including an unexpected tolerance for aromatic residues in this position. Motivated by this finding, we further demonstrate a high-affinity interaction between PHD1 and recently identified Q5-serotonylated H3. This work yields interesting insights into permissible PHD1-H3 interactions and demonstrates the value of interfacing PI-SAMDI and fluorescence polarization in investigations of protein-ligand binding.


Assuntos
Histonas/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Polarização de Fluorescência , Humanos , Ligantes
5.
ACS Cent Sci ; 5(3): 486-493, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30937376

RESUMO

Microfluidic platforms have enabled the simplification of biochemical assays with a significant reduction in the use of reagents, yet the current methods available for analyzing reaction products can limit applications of these approaches. This paper demonstrates a simple microfluidic device that incorporates a functionalized self-assembled monolayer to measure the rate constant for a chemical reaction. The device mixes the reactants and allows them to selectively immobilize to the monolayer at the base of a microfluidic channel in a time-dependent manner as they flow down the channel. Imaging self-assembled monolayers for matrix-assisted laser desorption/ionization mass spectrometry (iSAMDI-MS) is used to acquire a quantitative image representing the time-resolved progress of the reaction as it flowed through the channel. Knowledge of the surface immobilization chemistry and the fluid front characteristics allows for the determination of the chemical reaction rate constant. This approach widens the applicability of microfluidics for chemical reaction monitoring and establishes a label-free method for studying processes that occur within a dispersive regime.

6.
Sci Adv ; 5(6): eaaw9180, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31183410

RESUMO

Metabolic engineering uses enzymes to produce small molecules with industrial, pharmaceutical, and energy applications. However, efforts to optimize enzymatic pathways for commercial production are limited by the throughput of assays for quantifying metabolic intermediates and end products. We developed a multiplexed method for profiling CoA-dependent pathways that uses a cysteine-terminated peptide to covalently capture CoA-bound metabolites. Captured metabolites are then rapidly separated from the complex mixture by immobilization onto arrays of self-assembled monolayers and directly quantified by SAMDI mass spectrometry. We demonstrate the throughput of the assay by characterizing the cell-free synthesis of HMG-CoA, a key intermediate in the biosynthesis of isoprenoids, collecting over 10,000 individual spectra to map more than 800 unique reaction conditions. We anticipate that our rapid and robust analytical method will accelerate efforts to engineer metabolic pathways.


Assuntos
Acil Coenzima A/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Terpenos/química , Sistema Livre de Células , Glucose/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Engenharia Metabólica , Peptídeos/química , Terpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA