Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chempluschem ; 87(12): e202200240, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36198638

RESUMO

Antimicrobial peptides are an ancient and innate system of host defence against a wide range of microbial assailants. Mechanistically, unstructured peptides undergo a secondary structure transition into amphipathic α-helices, upon contact with membrane surfaces. This leads to peptide binding and removal of the membrane components in a detergent-like manner or via self-organisation into trans-membrane pores (either barrel-stave or toroidal pore) thereby destroying the microbe. Self-assembly of antimicrobial peptides into oligomers and ultimately amyloid has been mostly examined in parallel, however recent findings link diseases, such as Alzheimer's disease as an aberrant activity of a protective neuropeptide with antimicrobial activity. These self-assembled oligomers can also interact with membranes. Here, we review those antimicrobial peptides reported to self-assemble into amyloid, where supported by structural evidence. We consider their membrane activities as antimicrobial peptides and present evidence of consistent self-assembly patterns across major evolutionary groups. Trends are apparent across these groups, supporting the mounting data that self-assembly of antimicrobial peptides into amyloid should be considered as synergistic to the antimicrobial peptide response.


Assuntos
Peptídeos Antimicrobianos , Peptídeos , Estrutura Secundária de Proteína , Peptídeos/química
2.
JACS Au ; 2(1): 169-177, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35098233

RESUMO

Cobalt-mediated radical polymerizations (CMRPs) have been initiated by the radical decarboxylation of tetrachlorophthalimide activated esters. This allows for the controlled radical polymerization of activated monomers across a broad temperature range with a single cobalt species, with the incorporation of polymer end groups derived from simple carboxylic acid derivatives and termination with an organozinc reagent. This method has been applied to the synthesis of a polymer/graphene conjugate and a water-soluble protein/polymer conjugate, demonstrating the first examples of CMRP in graphene and protein conjugation.

3.
Mol Cell Neurosci ; 41(4): 440-7, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19409492

RESUMO

Brain-derived neurotrophic factor (BDNF) was the first purified molecule identified to directly support the development of mesencephalic dopamine neurons. However, its physiologic role has remained unknown. Based on patterns of expression, it is unlikely to serve as a target-derived neurotrophic factor, but it may instead act locally in the mesencephalon, either released by afferent projections, or in autocrine fashion. To assess a possible local role, we blocked BDNF signaling in the substantia nigra (SN) of postnatal rats by injection of either neutralizing antibodies or a peptide antagonist. These treatments increased the magnitude of developmental cell death in the SN, indicating that endogenous local BDNF does play a regulatory role. However, we also find that elimination of BDNF in brain throughout postnatal development in BDNF(fl/fl):Nestin-Cre mice has no effect on the adult number of SN dopamine neurons. We postulate that other forms of trophic support may compensate for the elimination of BDNF during early development. Although the number of SN dopamine neurons is unchanged, their organization is disrupted. We conclude that BDNF plays a physiologic role in the postnatal development of SN dopamine neurons.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dopamina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Neurônios/fisiologia , Substância Negra/citologia , Substância Negra/crescimento & desenvolvimento , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Anticorpos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/imunologia , Morte Celular/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Marcação In Situ das Extremidades Cortadas/métodos , Proteínas de Filamentos Intermediários/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Nestina , Neurônios/efeitos dos fármacos , Peptídeos/farmacologia , Gravidez , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/metabolismo
4.
J Biol Chem ; 283(48): 33375-83, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-18809686

RESUMO

Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of neurotrophic factors. BDNF has long been recognized to have potential for the treatment of a variety of human neurodegenerative diseases. However, clinical trials with recombinant BDNF have yet to yield success, leading to the suggestion that alternative means of harnessing BDNF actions for therapeutic use may be required. Here we describe an approach to create low molecular weight peptides that, like BDNF, promote neuronal survival. The peptides were designed to mimic a cationic tripeptide sequence in loop 4 of BDNF shown in previous studies to contribute to the binding of BDNF to the common neurotrophin receptor p75NTR. The best of these peptides, the cyclic pentapeptide 2 (cyclo(-D-Pro-Ala-Lys-Arg-)), despite being of low molecular weight (Mr 580), was found to be an effective promoter of the survival of embryonic chick dorsal root ganglion sensory neurons in vitro (maximal survival, 68 +/- 3% of neurons supported by BDNF). Pentapeptide 2 did not affect the phosphorylation of either TrkB (the receptor tyrosine kinase for BDNF) or the downstream signaling molecule MAPK, indicating that its mechanism of neuronal survival action is independent of TrkB. NMR studies reveal that pentapeptide 2 adopts a well defined backbone conformation in solution. Furthermore, pentapeptide 2 was found to be effectively resistant to proteolysis when incubated in a solution of rat plasma in vitro. These properties of pentapeptide 2 (low molecular weight, appropriate pharmacological actions, a well defined solution conformation, and proteolytic stability) render it worthy of further investigation, either as a template for the further design of neuronal survival promoting agents or as a lead compound with therapeutic potential in its own right.


Assuntos
Materiais Biomiméticos/farmacologia , Fator Neurotrófico Derivado do Encéfalo , Desenho de Fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Oligopeptídeos/farmacologia , Animais , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Oligopeptídeos/síntese química , Oligopeptídeos/química , Estrutura Secundária de Proteína , Ratos , Receptor de Fator de Crescimento Neural/metabolismo , Receptor trkB/metabolismo
5.
J Biol Chem ; 278(28): 25738-44, 2003 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-12730196

RESUMO

Brain-derived neurotrophic factor (BDNF) has potential for the treatment of human neurodegenerative diseases. However, the general lack of success of neurotrophic factors in clinical trials has led to the suggestion that low molecular weight neurotrophic drugs may be better agents for therapeutic use. Here we describe small, dimeric peptides designed to mimic a pair of solvent-exposed loops important for the binding and activation of the BDNF receptor, trkB. The monomer components that make up the dimers were based on a monocyclic monomeric peptide mimic of a single loop of BDNF (loop 2) that we had previously shown to be an inhibitor of BDNF-mediated neuronal survival (O'Leary, P. D., and Hughes, R. A. (1998) J. Neurochem. 70, 1712-1721). Bicyclic dimeric peptides behaved as partial agonists with respect to BDNF, promoting the survival of embryonic chick sensory neurons in culture. We reasoned that the potency and/or efficacy of these compounds might be improved by reducing the conformational flexibility about their dimerizing linker. Thus, we designed a highly conformationally constrained tricyclic dimeric peptide and synthesized it using an efficient, quasi-one-pot approach. Although still a partial BDNF-like agonist, the tricyclic dimer was particularly potent in promoting neuronal survival in vitro (EC50 11 pm). The peptides described here, which are greatly reduced in size compared with the parent protein, could serve as useful lead compounds for the development of true neurotrophic drugs and indicate that the structure-based design approach could be used to obtain potent mimetics of other growth factors that dimerize their receptors.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/química , Peptídeos/química , Receptor trkB/metabolismo , Sequência de Aminoácidos , Animais , Sobrevivência Celular , Células Cultivadas , Embrião de Galinha , Dimerização , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Neurônios/metabolismo , Biossíntese Peptídica , Ligação Proteica , Conformação Proteica , Receptor trkB/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA