Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 21(9): 3762-3771, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33881872

RESUMO

Outcomes during immunotherapy are impacted not only by the specific therapeutic signals and pharmacodynamics, but also by the biophysical forms in which signals are delivered. This integration is determinative in autoimmunity because the disease is caused by immune dysregulation and inflammation. Unfortunately, the links between nanomaterial design, biophysical properties, and immune regulation are poorly defined. Here we designed cationic peptide antigens with defined charge distributions and then used electrostatics to assemble these peptides into complexes with anionic regulatory cues. We first show complexes induce antigen-specific tolerance during myelin-driven autoimmunity. We next show the affinity between these immune cues is controlled by charge balance and that affinity confers distinct biophysical properties important in immunological processing, including antigen availability. The underlying binding affinities between the self-assembled signals influences inflammatory gene expression in dendritic cells and antigen-specific regulatory outcomes in self-reactive transgenic T cells. This granular understanding of nanomaterial-immune interactions contributes to a more rational immunotherapy design.


Assuntos
Imunoterapia , Linfócitos T , Antígenos , Imunidade , Peptídeos
2.
Biotechnol Bioeng ; 117(1): 210-222, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31544959

RESUMO

Metastases are preceded by stochastic formation of a hospitable microenvironment known as the premetastatic niche, which has been difficult to study. Herein, we employ implantable polycaprolactone scaffolds as an engineered premetastatic niche to independently investigate the role of interleukin-10 (IL10), CXCL12, and CCL2 in recruiting immune and tumor cells and impacting breast cancer cell phenotype via lentiviral overexpression. Lentivirus delivered from scaffolds in vivo achieved sustained transgene expression for 56 days. IL10 lentiviral expression, but not CXCL12 or CCL2, significantly decreased tumor cell recruitment to scaffolds in vivo. Delivery of CXCL12 enhanced CD45+ immune cell recruitment to scaffolds while delivery of IL10 reduced immune cell recruitment. CCL2 did not alter immune cell recruitment. Tumor cell phenotype was investigated using conditioned media from immunomodulated scaffolds, with CXCL12 microenvironments reducing proliferation, and IL10 microenvironments enhancing proliferation. Migration was enhanced with CCL2 and reduced with IL10-driven microenvironments. Multiple linear regression identified populations of immune cells associated with tumor cell abundance. CD45+ immune and CD8+ T cells were associated with reduced tumor cell abundance, while CD11b+Gr1+ neutrophils and CD4+ T cells were associated with enhanced tumor cell abundance. Collectively, biomaterial scaffolds provide a tool to probe the formation and function of the premetastatic niche.


Assuntos
Lentivirus , Neoplasias , Alicerces Teciduais/química , Microambiente Tumoral , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Citocinas/metabolismo , Feminino , Imunomodulação , Lentivirus/genética , Lentivirus/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica/imunologia , Neoplasias/imunologia , Neoplasias/metabolismo , Poliésteres , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
3.
Biotechnol Bioeng ; 115(8): 2075-2086, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29704433

RESUMO

Cancer survivorship rates have drastically increased due to improved efficacy of oncologic treatments. Consequently, clinical concerns have shifted from solely focusing on survival to quality of life, with fertility preservation as an important consideration. Among fertility preservation strategies for female patients, ovarian tissue cryopreservation and subsequent reimplantation has been the only clinical option available to cancer survivors with cryopreserved tissue. However, follicle atresia after transplantation and risk of reintroducing malignant cells have prevented this procedure from becoming widely adopted in clinics. Herein, we investigated the encapsulation of ovarian follicles in alginate hydrogels that isolate the graft from the host, yet allows for maturation after transplantation at a heterotopic (i.e., subcutaneous) site, a process we termed in vivo follicle maturation. Survival of multiple follicle populations was confirmed via histology, with the notable development of the antral follicles. Collected oocytes (63%) exhibited polar body extrusion and were fertilized by intracytoplasmic sperm injection and standard in vitro fertilization procedures. Successfully fertilized oocytes developed to the pronucleus (14%), two-cell (36%), and four-cell (7%) stages. Furthermore, ovarian follicles cotransplanted with metastatic breast cancer cells within the hydrogels allowed for retrieval of the follicles, and no mice developed tumors after removal of the implant, confirming that the hydrogel prevented seeding of disease within the host. Collectively, these findings demonstrate a viable option for safe use of potentially cancer-laden ovarian donor tissue for in vivo follicle maturation within a retrievable hydrogel and subsequent oocyte collection. Ultimately, this technology may provide novel options to preserve fertility for young female patients with cancer.


Assuntos
Fertilização in vitro/métodos , Hidrogel de Polietilenoglicol-Dimetacrilato , Recuperação de Oócitos , Transplante de Órgãos/métodos , Folículo Ovariano/fisiologia , Animais , Feminino , Camundongos , Modelos Animais , Transplante de Neoplasias
4.
Adv Drug Deliv Rev ; 209: 115315, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38670230

RESUMO

Immunotherapies have been transformative in many areas, including cancer treatments, allergies, and autoimmune diseases. However, significant challenges persist in extending the reach of these technologies to new indications and patients. Some of the major hurdles include narrow applicability to patient groups, transient efficacy, high cost burdens, poor immunogenicity, and side effects or off-target toxicity that results from lack of disease-specificity and inefficient delivery. Thus, there is a significant need for strategies that control immune responses generated by immunotherapies while targeting infection, cancer, allergy, and autoimmunity. Being the outermost barrier of the body and the first line of host defense, the skin presents a unique immunological interface to achieve these goals. The skin contains a high concentration of specialized immune cells, such as antigen-presenting cells and tissue-resident memory T cells. These cells feature diverse and potent combinations of immune receptors, providing access to cellular and molecular level control to modulate immune responses. Thus, skin provides accessible tissue, cellular, and molecular level controls that can be harnessed to improve immunotherapies. Biomaterial platforms - microneedles, nano- and micro-particles, scaffolds, and other technologies - are uniquely capable of modulating the specialized immunological niche in skin by targeting these distinct biological levels of control. This review highlights recent pre-clinical and clinical advances in biomaterial-based approaches to target and modulate immune signaling in the skin at the tissue, cellular, and molecular levels for immunotherapeutic applications. We begin by discussing skin cytoarchitecture and resident immune cells to establish the biological rationale for skin-targeting immunotherapies. This is followed by a critical presentation of biomaterial-based pre-clinical and clinical studies aimed at controlling the immune response in the skin for immunotherapy and therapeutic vaccine applications in cancer, allergy, and autoimmunity.


Assuntos
Materiais Biocompatíveis , Imunoterapia , Pele , Humanos , Imunoterapia/métodos , Materiais Biocompatíveis/administração & dosagem , Pele/imunologia , Pele/metabolismo , Animais , Transdução de Sinais , Sistemas de Liberação de Medicamentos
5.
iScience ; 27(1): 108600, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38179062

RESUMO

Fleas transmit Yersinia pestis directly within the dermis of mammals to cause bubonic plague. Syringe-mediated inoculation is widely used to recapitulate bubonic plague and study Y. pestis pathogenesis. However, intradermal needle inoculation is tedious, error prone, and poses a significant safety risk for laboratorians. Microneedle arrays (MNAs) are micron-scale polymeric structures that deliver materials to the dermis, while minimizing the risk of needle sticks. We demonstrated that MNA inoculation is a viable strategy to recapitulate bubonic plague and study bacterial virulence by defining the parameters needed to establish a lethal infection in the mouse model and characterizing the course of infection using live-animal optical imaging. Using MNAs, we also demonstrated that Y. pestis must overcome calprotectin-mediated zinc restriction within the dermis and dermal delivery of an attenuated mutant has vaccine potential. Together, these data demonstrate that MNAs are a safe alternative to study Y. pestis pathogenesis in the laboratory.

6.
Nat Rev Bioeng ; : 1-3, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37359775

RESUMO

Scientific bias originates from both researchers and techniques. Evidence-based strategies to mitigate this bias include the assembly of diverse teams, development of rigorous experimental designs, and use of unbiased analytical techniques. Here, we highlight potential starting points to decrease bias in bioengineering research.

7.
Nanoscale ; 15(19): 8662-8674, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37185984

RESUMO

Microneedle arrays (MNAs) are patches displaying hundreds of micron-scale needles that can penetrate skin. As a result, these arrays efficiently and painlessly access this immune cell-rich niche, motivating significant clinical interest in MNA-based vaccines. Our lab has developed immune polyelectrolyte multilayers (iPEMs), nanostructures built entirely from immune signals employing electrostatic self-assembly. iPEMs consist of positively charged peptide antigen and negatively charged toll-like receptor agonists (TLRas) to assemble these components at ultra-high density since no carrier is needed. Here we used this technology to deliver MNAs with antigen and defined ratios of multiple classes of TLRa. Notably, this approach resulted in facile assembly and corresponding signal transduction through each respective TLR pathway. This control ultimately activated primary antigen presenting cells and drove proliferation of antigen-specific T cells. In related in vivo vaccine studies, application of MNAs resulted in distinct T cells response depending on the number of TLRa classes delivered with MNAs. These MNAs technologies create an opportunity to deliver nanostructured vaccine components at high density, and to probe integration of multiple TLRas in skin to tune immunity.


Assuntos
Pele , Vacinas , Adjuvantes Imunológicos/química , Polieletrólitos/química , Antígenos , Receptores Toll-Like , Imunidade
8.
Front Bioeng Biotechnol ; 11: 1184938, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441198

RESUMO

Biomaterials allow for the precision control over the combination and release of cargo needed to engineer cell outcomes. These capabilities are particularly attractive as new candidate therapies to treat autoimmune diseases, conditions where dysfunctional immune cells create pathogenic tissue environments during attack of self-molecules termed self-antigens. Here we extend past studies showing combinations of a small molecule immunomodulator co-delivered with self-antigen induces antigen-specific regulatory T cells. In particular, we sought to elucidate how different ratios of these components loaded in degradable polymer particles shape the antigen presenting cell (APC) -T cell interactions that drive differentiation of T cells toward either inflammatory or regulatory phenotypes. Using rapamycin (rapa) as a modulatory cue and myelin self-peptide (myelin oligodendrocyte glycoprotein- MOG) - self-antigen attacked during multiple sclerosis (MS), we integrate these components into polymer particles over a range of ratios and concentrations without altering the physicochemical properties of the particles. Using primary cell co-cultures, we show that while all ratios of rapa:MOG significantly decreased expression of co-stimulation molecules on dendritic cells (DCs), these levels were insensitive to the specific ratio. During co-culture with primary T cell receptor transgenic T cells, we demonstrate that the ratio of rapa:MOG controls the expansion and differentiation of these cells. In particular, at shorter time points, higher ratios induce regulatory T cells most efficiently, while at longer time points the processes are not sensitive to the specific ratio. We also found corresponding changes in gene expression and inflammatory cytokine secretion during these times. The in vitro results in this study contribute to in vitro regulatory T cell expansion techniques, as well as provide insight into future studies to explore other modulatory effects of rapa such as induction of maintenance or survival cues.

9.
Nat Commun ; 14(1): 681, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755035

RESUMO

Antigen-specific tolerance is a key goal of experimental immunotherapies for autoimmune disease and allograft rejection. This outcome could selectively inhibit detrimental inflammatory immune responses without compromising functional protective immunity. A major challenge facing antigen-specific immunotherapies is ineffective control over immune signal targeting and integration, limiting efficacy and causing systemic non-specific suppression. Here we use intra-lymph node injection of diffusion-limited degradable microparticles that encapsulate self-antigens with the immunomodulatory small molecule, rapamycin. We show this strategy potently inhibits disease during pre-clinical type 1 diabetes and allogenic islet transplantation. Antigen and rapamycin are required for maximal efficacy, and tolerance is accompanied by expansion of antigen-specific regulatory T cells in treated and untreated lymph nodes. The antigen-specific tolerance in type 1 diabetes is systemic but avoids non-specific immune suppression. Further, microparticle treatment results in the development of tolerogenic structural microdomains in lymph nodes. Finally, these local structural and functional changes in lymph nodes promote memory markers among antigen-specific regulatory T cells, and tolerance that is durable. This work supports intra-lymph node injection of tolerogenic microparticles as a powerful platform to promote antigen-dependent efficacy in type 1 diabetes and allogenic islet transplantation.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Humanos , Tolerância Imunológica , Autoantígenos , Linfonodos/patologia , Sirolimo
10.
Front Immunol ; 13: 843355, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359943

RESUMO

Biomaterials hold great promise for vaccines and immunotherapy. One emerging biomaterials technology is microneedle (MNs) delivery. MNs are arrays of micrometer-sized needles that are painless and efficiently deliver cargo to the specialized immunological niche of the skin. MNs typically do not require cold storage and eliminate medical sharps. Nearly all materials exhibit intrinsic properties that can bias immune responses toward either pro-immune or inhibitory effects. Thus, because MNs are fabricated from degradable polymers to enable cargo loading and release, understanding the immunological profiles of these matrices is essential to enable new MN vaccines and immunotherapies. Additionally, understanding the mechanical properties is important because MNs must penetrate the skin and conform to a variety of skin or tissue geometries. Here we fabricated MNs from important polymer classes - including extracellular matrix biopolymers, naturally-derived polymers, and synthetic polymers - with both high- and low-molecular-weights (MW). We then characterized the mechanical properties and intrinsic immunological properties of these designs. The library of polymer MNs exhibited diverse mechanical properties, while causing only modest changes in innate signaling and antigen-specific T cell proliferation. These data help inform the selection of MN substrates based on the mechanical and immunological requirements needed for a specific vaccine or immunotherapy application.


Assuntos
Agulhas , Vacinas , Materiais Biocompatíveis , Imunoterapia , Polímeros/química
11.
Adv Sci (Weinh) ; : e2202393, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36373708

RESUMO

Recent clinical studies show activating multiple innate immune pathways drives robust responses in infection and cancer. Biomaterials offer useful features to deliver multiple cargos, but add translational complexity and intrinsic immune signatures that complicate rational design. Here a modular adjuvant platform is created using self-assembly to build nanostructured capsules comprised entirely of antigens and multiple classes of toll-like receptor agonists (TLRas). These assemblies sequester TLR to endolysosomes, allowing programmable control over the relative signaling levels transduced through these receptors. Strikingly, this combinatorial control of innate signaling can generate divergent antigen-specific responses against a particular antigen. These assemblies drive reorganization of lymph node stroma to a pro-immune microenvironment, expanding antigen-specific T cells. Excitingly, assemblies built from antigen and multiple TLRas enhance T cell function and antitumor efficacy compared to ad-mixed formulations or capsules with a single TLRa. Finally, capsules built from a clinically relevant human melanoma antigen and up to three TLRa classes enable simultaneous control of signal transduction across each pathway. This creates a facile adjuvant design platform to tailor signaling for vaccines and immunotherapies without using carrier components. The modular nature supports precision juxtaposition of antigen with agonists relevant for several innate receptor families, such as toll, STING, NOD, and RIG.

12.
ACS Nano ; 15(3): 4305-4320, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33645967

RESUMO

Autoimmune diseases like multiple sclerosis (MS), type 1 diabetes, and lupus occur when the immune system attacks host tissue. Immunotherapies that promote selective tolerance without suppressing normal immune function are of tremendous interest. Here, nanotechnology was used for rational assembly of peptides and modulatory immune cues into immune complexes. Complexes containing self-peptides and regulatory nucleic acids reverse established paralysis in a preclinical MS model. Importantly, mice responding to immunotherapy maintain healthy, antigen-specific B and T cell responses during a foreign antigen challenge. A therapeutic library isolating specific components reveals that regulatory nucleic acids suppress inflammatory genes in innate immune cells, while disease-matched peptide sequences control specificity of tolerance. Distinct gene expression profiles in cells and animals are associated with the immune signals administered in particulate and soluble forms, highlighting the impact of biophysical presentation of signals. This work provides insight into the rational manipulation of immune signaling to drive tolerance.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Animais , Doenças Autoimunes/tratamento farmacológico , Sinais (Psicologia) , Tolerância Imunológica , Camundongos , Linfócitos T , Linfócitos T Reguladores
13.
Circulation ; 119(13): 1758-67, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19307477

RESUMO

BACKGROUND: Atrial fibrillation (AF) is associated with diffuse left atrial fibrosis and a reduction in endocardial voltage. These changes are indicators of AF severity and appear to be predictors of treatment outcome. In this study, we report the utility of delayed-enhancement magnetic resonance imaging (DE-MRI) in detecting abnormal atrial tissue before radiofrequency ablation and in predicting procedural outcome. METHODS AND RESULTS: Eighty-one patients presenting for pulmonary vein antrum isolation for treatment of AF underwent 3-dimensional DE-MRI of the left atrium before the ablation. Six healthy volunteers also were scanned. DE-MRI images were manually segmented to isolate the left atrium, and custom software was implemented to quantify the spatial extent of delayed enhancement, which was then compared with the regions of low voltage from electroanatomic maps from the pulmonary vein antrum isolation procedure. Patients were assessed for AF recurrence at least 6 months after pulmonary vein antrum isolation, with an average follow-up of 9.6+/-3.7 months (range, 6 to 19 months). On the basis of the extent of preablation enhancement, 43 patients were classified as having minimal enhancement (average enhancement, 8.0+/-4.2%), 30 as having moderate enhancement (21.3+/-5.8%), and 8 as having extensive enhancement (50.1+/-15.4%). The rate of AF recurrence was 6 patients (14.0%) with minimal enhancement, 13 (43.3%) with moderate enhancement, and 6 (75%) with extensive enhancement (P<0.001). CONCLUSIONS: DE-MRI provides a noninvasive means of assessing left atrial myocardial tissue in patients suffering from AF and might provide insight into the progress of the disease. Preablation DE-MRI holds promise for predicting responders to AF ablation and may provide a metric of overall disease progression.


Assuntos
Fibrilação Atrial/patologia , Fibrilação Atrial/cirurgia , Ablação por Cateter , Imageamento por Ressonância Magnética/métodos , Miocárdio/patologia , Idoso , Antiarrítmicos/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Terapia Combinada , Progressão da Doença , Feminino , Fibrose , Átrios do Coração/patologia , Átrios do Coração/cirurgia , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , Resultado do Tratamento
14.
Biomaterials ; 234: 119757, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31951973

RESUMO

Tissues derived from human pluripotent stem cells (hPSCs) often represent early stages of fetal development, but mature at the molecular and structural level when transplanted into immunocompromised mice. hPSC-derived lung organoids (HLOs) transplantation has been further enhanced with biomaterial scaffolds, where HLOs had improved tissue structure and cellular differentiation. Here, our goal was to define the physico-chemical biomaterial properties that maximally enhanced transplant efficiency, including features such as the polymer type, degradation, and pore interconnectivity of the scaffolds. We found that transplantation of HLOs on microporous scaffolds formed from poly (ethylene glycol) (PEG) hydrogel scaffolds inhibit growth and maturation, and the transplanted HLOs possessed mostly immature lung progenitors. On the other hand, HLOs transplanted on poly (lactide-co-glycolide) (PLG) scaffolds or polycaprolactone (PCL) led to tube-like structures that resembled both the structure and cellular diversity of an adult airway. Our data suggests that scaffold pore interconnectivity and polymer degradation contributed to the maturation, and we found that the size of the airway structures and the total size of the transplanted tissue was influenced by the material degradation rate. Collectively, these biomaterial platforms provide a set of tools to promote maturation of the tissues and to control the size and structure of the organoids.


Assuntos
Organoides , Células-Tronco Pluripotentes , Adulto , Animais , Materiais Biocompatíveis , Humanos , Hidrogéis , Recém-Nascido , Pulmão , Camundongos , Engenharia Tecidual , Alicerces Teciduais
15.
Nat Commun ; 11(1): 3871, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747712

RESUMO

Relapses in multiple sclerosis can result in irreversible nervous system tissue injury. If these events could be detected early, targeted immunotherapy could potentially slow disease progression. We describe the use of engineered biomaterial-based immunological niches amenable to biopsy to provide insights into the phenotype of innate immune cells that control disease activity in a mouse model of multiple sclerosis. Differential gene expression in cells from these niches allow monitoring of disease dynamics and gauging the effectiveness of treatment. A proactive treatment regimen, given in response to signal within the niche but before symptoms appeared, substantially reduced disease. This technology offers a new approach to monitor organ-specific autoimmunity, and represents a platform to analyze immune dysfunction within otherwise inaccessible target tissues.


Assuntos
Encefalomielite Autoimune Experimental/terapia , Imunoterapia/métodos , Monitorização Fisiológica/métodos , Esclerose Múltipla/terapia , Animais , Modelos Animais de Doenças , Progressão da Doença , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Feminino , Expressão Gênica/genética , Expressão Gênica/imunologia , Perfilação da Expressão Gênica/métodos , Humanos , Camundongos Endogâmicos , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Recidiva , Resultado do Tratamento
16.
Cancer Res ; 80(18): 3786-3794, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32409307

RESUMO

Cancer metastasis poses a challenging problem both clinically and scientifically, as the stochastic nature of metastatic lesion formation introduces complexity for both early detection and the study of metastasis in preclinical models. Engineered metastatic niches represent an emerging approach to address this stochasticity by creating bioengineered sites where cancer can preferentially metastasize. As the engineered niche captures the earliest metastatic cells at a nonvital location, both noninvasive and biopsy-based monitoring of these sites can be performed routinely to detect metastasis early and monitor alterations in the forming metastatic niche. The engineered metastatic niche also provides a new platform technology that serves as a tunable site to molecularly dissect metastatic disease mechanisms. Ultimately, linking the engineered niches with advances in sensor development and synthetic biology can provide enabling tools for preclinical cancer models and fosters the potential to impact the future of clinical cancer care.


Assuntos
Bioengenharia/métodos , Metástase Neoplásica/patologia , Metástase Neoplásica/terapia , Medicina de Precisão , Microambiente Tumoral , Animais , Bioengenharia/tendências , Biópsia , Técnicas Biossensoriais/métodos , Movimento Celular/fisiologia , Humanos , Neoplasias/diagnóstico , Especificidade de Órgãos/fisiologia , Biologia Sintética , Hipóxia Tumoral/fisiologia
17.
Ann Biomed Eng ; 48(1): 477-489, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31549327

RESUMO

For most cancers, metastasis is the point at which disease is no longer curable. Earlier detection of metastasis, when it is undetectable by current clinical methods, may enable better outcomes. We have developed a biomaterial implant that recruits metastatic cancer cells in mouse models of breast cancer. Here, we investigate spectral ultrasound imaging (SUSI) as a non-invasive strategy for detecting metastasis to the implanted biomaterial scaffolds. Our results show that SUSI, which detects parameters related to tissue composition and structure, identified changes at an early time point when tumor cells were recruited to scaffolds in orthotopic breast cancer mouse models. These changes were not associated with acellular components in the scaffolds but were reflected in the cellular composition in the scaffold microenvironment, including an increase in CD31 + CD45-endothelial cell number in tumor bearing mice. In addition, we built a classification model based on changes in SUSI parameters from scaffold measurements to stratify tumor free and tumor bearing status. Combination of a linear discriminant analysis and bagged decision trees model resulted in an area under the curve of 0.92 for receiver operating characteristics analysis. With the potential for early non-invasive detection, SUSI could facilitate clinical translation of the scaffolds for monitoring metastatic disease.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Alicerces Teciduais , Ultrassonografia/métodos , Animais , Materiais Biocompatíveis , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos
18.
Cancer Res ; 80(3): 602-612, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31662327

RESUMO

Monitoring metastatic events in distal tissues is challenged by their sporadic occurrence in obscure and inaccessible locations within these vital organs. A synthetic biomaterial scaffold can function as a synthetic metastatic niche to reveal the nature of these distal sites. These implanted scaffolds promote tissue ingrowth, which upon cancer initiation is transformed into a metastatic niche that captures aggressive circulating tumor cells. We hypothesized that immune cell phenotypes at synthetic niches reflect the immunosuppressive conditioning within a host that contributes to metastatic cell recruitment and can identify disease progression and response to therapy. We analyzed the expression of 632 immune-centric genes in tissue biopsied from implants at weekly intervals following inoculation. Specific immune populations within implants were then analyzed by single-cell RNA-seq. Dynamic gene expression profiles in innate cells, such as myeloid-derived suppressor cells, macrophages, and dendritic cells, suggest the development of an immunosuppressive microenvironment. These dynamics in immune phenotypes at implants was analogous to that in the diseased lung and had distinct dynamics compared with blood leukocytes. Following a therapeutic excision of the primary tumor, longitudinal tracking of immune phenotypes at the implant in individual mice showed an initial response to therapy, which over time differentiated recurrence versus survival. Collectively, the microenvironment at the synthetic niche acts as a sentinel by reflecting both progression and regression of disease. SIGNIFICANCE: Immune dynamics at biomaterial implants, functioning as a synthetic metastatic niche, provides unique information that correlates with disease progression. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/3/602/F1.large.jpg.See related commentary by Wolf and Elisseeff, p. 377.


Assuntos
Materiais Biocompatíveis , Recidiva Local de Neoplasia , Animais , Carvão Mineral , Progressão da Doença , Camundongos , Resultado do Tratamento , Microambiente Tumoral
19.
Cancer Res ; 79(8): 2042-2053, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30808673

RESUMO

For most cancers, metastasis is the point at which clinical treatment shifts from curative intent to extending survival. Biomaterial implants acting as a synthetic premetastatic niche recruit metastatic cancer cells and provide a survival advantage, and their use as a diagnostic platform requires assessing their relevance to disease progression. Here, we showed that scaffold-captured tumor cells (SCAF) were 30 times more metastatic to the lung than primary tumor (PT) cells, similar to cells derived from lung micrometastases (LUNG). SCAF cells were more aggressive in vitro, demonstrated higher levels of migration, invasion, and mammosphere formation, and had a greater proportion of cancer stem cells than PT. SCAF cells were highly enriched for gene expression signatures associated with metastasis and had associated genomic structural changes, including globally enhanced entropy. Collectively, our findings demonstrate that SCAF cells are distinct from PT and more closely resemble LUNG, indicating that tumor cells retrieved from scaffolds are reflective of cells at metastatic sites. SIGNIFICANCE: These findings suggest that metastatic tumor cells captured by a biomaterial scaffold may serve as a diagnostic for molecular staging of metastasis.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/8/2042/F1.large.jpg.


Assuntos
Materiais Biocompatíveis/química , Neoplasias da Mama/patologia , Neoplasias Pulmonares/secundário , Células-Tronco Neoplásicas/patologia , Alicerces Teciduais/química , Animais , Apoptose , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Transcriptoma , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Biomaterials ; 154: 1-11, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29117574

RESUMO

Available evidence suggests that the magnitude of the foreign body response (FBR) to implants placed in cortical brain tissue is affected by the extent of vasculature damage following device insertion and the magnitude of the ensuing macrophage response. Since the extracellular matrix (ECM) serves as a natural hemostatic and immunomodulatory agent, we examined the ability of an FDA-approved neurosurgical hemostatic coating and an ECM coating derived from primary rat astrocytes to reduce the FBR surrounding a penetrating microelectrode array chronically implanted in rat cortex. Using quantitative methods, we examined various components of the FBR in vitro and after implantation. In vitro assays showed that both coatings accelerated coagulation in a similar fashion but only the astrocyte-derived material suppressed macrophage activation. In addition, the ECM coating derived from astrocytes, also decreased the astrogliotic response 8 weeks after implantation. Neither coating had a significant influence on the intensity or spatial distribution of FBR biomarkers 1 week after implantation or on degree of macrophage activation or neuronal survival at the later time point. The results show that microelectrode coatings with similar hemostatic properties but different immunomodulatory characteristics differentially affect the FBR to an anchored, single-shank, silicon microelectrode array. The results also support the concept that divergent biological pathways affect the various components of the FBR in the CNS and suggests that decreasing its impact will require a multifaceted approach.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/patologia , Eletrodos Implantados , Matriz Extracelular/metabolismo , Gliose/patologia , Animais , Colágeno/metabolismo , Reação a Corpo Estranho/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Microeletrodos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA