Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 176: 116778, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788601

RESUMO

The incidence of cerebral infarction triggered by abnormal glucose tolerance has increased; however, the relationship between glucose concentration in the brain and the detailed mechanism of post ischemic cell death remains unclear. Nicotinamide phosphoribosyltransferase (NAMPT), an adipocytokine, is the rate-limiting enzyme for NAD+ synthesis in the salvage pathway. Although NAMPT activation prevents neuronal injury, the relationship between NAMPT activity, glucose metabolism disorders, and cerebral ischemia-induced neuronal cell death is unknown. In this study, we determined changes in NAMPT on cerebral ischemic injuries with diabetes using a db/db mouse model of type 2 diabetes and then identified the underlying mechanisms using Neuro2a cells. The expression of inflammatory cytokine mRNAs was increased in db/db and db/+ middle cerebral artery occlusion and reperfusion (MCAO/R) mice. Although NeuN-positive cells were decreased after MCAO/R, the number of NAMPT and NeuN double-positive cells in NeuN-positive neuronal cells increased in db/db MCAO/R mice. Next, the role of NAMPT in Neuro2a cells under conditions of high glucose (HGC) and oxygen-glucose deprivation (OGD), which mimics diabetes-complicated cerebral infarction, was examined. Treatment with P7C3-A20, a NAMPT activator, suppressed the decrease in cell viability caused by HGC/OGD; however, there were no significant differences in the levels of cleaved caspase-3 and Bax proteins. Moreover, increased FoxO3a and LC3-II levels after HGC/OGD were inhibited by P7C3-A20 treatment. Our findings indicate that NAMPT activation is associated with neuronal survival under ischemic conditions with abnormal glucose tolerance through the regulation of FoxO3a/LC3.


Assuntos
Isquemia Encefálica , Sobrevivência Celular , Proteína Forkhead Box O3 , Glucose , Neurônios , Nicotinamida Fosforribosiltransferase , Transdução de Sinais , Animais , Nicotinamida Fosforribosiltransferase/metabolismo , Proteína Forkhead Box O3/metabolismo , Glucose/metabolismo , Glucose/deficiência , Neurônios/metabolismo , Neurônios/patologia , Neurônios/efeitos dos fármacos , Masculino , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/metabolismo , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA