Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Am J Vet Res ; : 1-8, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150818

RESUMO

OBJECTIVE: Emulsified isoflurane and sevoflurane have immunomodulating and anti-inflammatory effects in vital organs such as the brain, myocardium, and kidneys subjected to ischemia-reperfusion injury. This study aims to investigate the cellular protective effects of both emulsified anesthetics in cultured canine hepatocytes. PROCEDURES: We analyzed the apoptosis and viability responses of cultured primary canine hepatocytes exposed to 1% O2 for 30 versus 120 minutes after being treated with emulsified isoflurane or sevoflurane in 10% lipid, or 10% lipid alone or no-treatment control at 24 hours of reoxygenation (21% O2). RESULTS: After 120 minutes of hypoxia, the hepatocytes that received either emulsified isoflurane or sevoflurane treatments had significantly decreased apoptosis at 24 hours of reoxygenation in comparison to the 10% lipid treatment. Also, the no-treatment control group had significantly higher apoptosis at 24 hours of reoxygenation when exposed to 120 minutes of hypoxia compared to 30 minutes of hypoxia. Neither 30 nor 120 minutes of hypoxia or exposure to 10% lipid, emulsified isoflurane, or emulsified sevoflurane altered overall cellular viability at 24 hours of reoxygenation. CLINICAL RELEVANCE: This study demonstrated that both isoflurane and sevoflurane, in the emulsified form, have the potential to reduce the apoptotic response of cells under oxygen deprivation. Therefore, this attribute of both halogenated anesthetics suggests an alternative treatment to be applied in live patients submitted to surgical stabilization of organs and tissues under the risk of ischemia and reperfusion injury.

2.
J Exp Clin Cancer Res ; 41(1): 115, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354476

RESUMO

BACKGROUND: The inhibition of neddylation by the preclinical drug MLN4924 represents a new strategy to combat cancer. However, despite being effective against hematologic malignancies, its success in solid tumors, where cell-cell and cell-ECM interactions play essential roles, remains elusive. METHODS: Here, we studied the effects of MLN4924 on cell growth, migration and invasion in cultured prostate cancer cells and in disease-relevant prostate tumoroids. Using focused protein profiling, drug and RNAi screening, we analyzed cellular pathways activated by neddylation inhibition. RESULTS: We show that mechanical stress induced by MLN4924 in prostate cancer cells significantly affects the therapeutic outcome. The latter depends on the cell type and involves distinct Rho isoforms. In LNCaP and VCaP cells, the stimulation of RhoA and RhoB by MLN4924 markedly upregulates the level of tight junction proteins at cell-cell contacts, which augments the mechanical strain induced by Rho signaling. This "tight junction stress response" (TJSR) causes the collapse of cell monolayers and a characteristic rupture of cancer spheroids. Notably, TJSR is a major cause of drug-induced apoptosis in these cells. On the other hand, in PC3 cells that underwent partial epithelial-to-mesenchymal transition (EMT), the stimulation of RhoC induces an adverse effect by promoting amoeboid cell scattering and invasion. We identified complementary targets and drugs that allow for the induction of TJSR without stimulating RhoC. CONCLUSIONS: Our finding that MLN4924 acts as a mechanotherapeutic opens new ways to improve the efficacy of neddylation inhibition as an anticancer approach.


Assuntos
Apoptose , Neoplasias , Proliferação de Células , Humanos , Masculino , Proteína NEDD8/metabolismo , Estresse Mecânico
3.
J Crohns Colitis ; 16(2): 286-300, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-34286840

RESUMO

BACKGROUND AND AIMS: Inflammatory bowel diseases are highly debilitating conditions that require constant monitoring and life-long medication. Current treatments are focused on systemic administration of immunomodulatory drugs, but they have a broad range of undesirable side-effects. RNA interference is a highly specific endogenous mechanism that regulates the expression of the gene at the transcript level, which can be repurposed using exogenous short interfering RNA [siRNA] to repress expression of the target gene. While siRNA therapeutics can offer an alternative to existing therapies, with a high specificity critical for chronically administrated drugs, evidence of their potency compared to chemical kinase inhibitors used in clinics is still lacking in alleviating an adverse inflammatory response. METHODS: We provide a framework to select highly specific siRNA, with a focus on two kinases strongly involved in pro-inflammatory diseases, namely JAK1 and JAK3. Using western-blot, real-time quantitative PCR and large-scale analysis, we assessed the specificity profile of these siRNA drugs and compared their efficacy to the most recent and promising kinase inhibitors for Janus kinases [Jakinibs], tofacitinib and filgotinib. RESULTS: siRNA drugs can reach higher efficiency and selectivity at lower doses [5 pM vs 1 µM] than Jakinibs. Moreover, JAK silencing lasted up to 11 days, even with 6 h pulse transfection. CONCLUSIONS: The siRNA-based drugs developed hold the potential to develop more potent therapeutics for chronic inflammatory diseases.


Assuntos
Doenças Inflamatórias Intestinais , Janus Quinases , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/genética , Janus Quinases/genética , Janus Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Transdução de Sinais
4.
Sci Rep ; 11(1): 1290, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446678

RESUMO

We have discovered a new 4 h ultradian rhythm that occurs during the interphase of the cell cycle in a wide range of individual mammalian cells, including both primary and transformed cells. The rhythm was detected by holographic lens-free microscopy that follows the histories of the dry mass of thousands of single live cells simultaneously, each at a resolution of five minutes. It was vital that the rhythm was observed in inherently heterogeneous cell populations, thus eliminating synchronization and labeling bias. The rhythm is independent of circadian rhythm, and is temperature-compensated. We show that the amplitude of the fundamental frequency provides a way to quantify the effects of, chemical reagents on cells, thus shedding light on its mechanism. The rhythm is suppressed by proteostasis disruptors and is detected only in proliferating cells, suggesting that it represents a massive degradation and re-synthesis of protein every 4 h in growing cells.


Assuntos
Ritmo Ultradiano , Proliferação de Células , Células HeLa , Holografia , Humanos , Interfase , Análise de Célula Única , Temperatura
6.
Front Oncol ; 7: 293, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29322028

RESUMO

A recent decline in the discovery of novel medications challenges the widespread use of 2D monolayer cell assays in the drug discovery process. As a result, the need for more appropriate cellular models of human physiology and disease has renewed the interest in spheroid 3D culture as a pertinent model for drug screening. However, despite technological progress that has significantly simplified spheroid production and analysis, the seeming complexity of the 3D approach has delayed its adoption in many laboratories. The present report demonstrates that the use of a spheroid model may be straightforward and can provide information that is not directly available with a standard 2D approach. We describe a cost-efficient method that allows for the production of an array of uniform spheroids, their staining with vital dyes, real-time monitoring of drug effects, and an ATP-endpoint assay, all in the same 96-well U-bottom plate. To demonstrate the method performance, we analyzed the effect of the preclinical anticancer drug MLN4924 on spheroids formed by VCaP and LNCaP prostate cancer cells. The drug has different outcomes in these cell lines, varying from cell cycle arrest and protective dormancy to senescence and apoptosis. We demonstrate that by using high-content analysis of spheroid arrays, the effect of the drug can be described as a series of EC50 values that clearly dissect the cytostatic and cytotoxic drug actions. The method was further evaluated using four standard cancer chemotherapeutics with different mechanisms of action, and the effect of each drug is described as a unique multi-EC50 diagram. Once fully validated in a wider range of conditions, this method could be particularly valuable for phenotype-based drug discovery.

7.
Cell Death Dis ; 7(12): e2505, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27906189

RESUMO

Inhibition of protein degradation by blocking Cullin-RING E3 ligases (CRLs) is a new approach in cancer therapy though of unknown risk because CRL inhibition may stabilize both oncoproteins and tumor suppressors. Probing CRLs in prostate cancer cells revealed a remarkable plasticity of cells with TMPRSS2-ERG translocation. CRL suppression by chemical inhibition or knockdown of RING component RBX1 led to reversible G0/G1 cell cycle arrest that prevented cell apoptosis. Conversely, complete blocking of CRLs at a higher inhibitor dose-induced cytotoxicity that was amplified by knockdown of CRL regulator Cand1. We analyzed cell signaling to understand how varying degrees of CRL inhibition translated to distinct cell fates. Both tumor suppressor and oncogenic cell signaling pathways and transcriptional activities were affected, with pro-metastatic Wnt/ß-catenin as the most upregulated. Suppression of the NF-κB pathway contributed to anti-apoptotic effect, and androgen receptor (AR) and ERG played decisive, though opposite, roles: AR was involved in protective quiescence, whereas ERG promoted apoptosis. These data define AR-ERG interaction as a key plasticity and survival determinant in prostate cancer and suggest supplementary treatments that may overcome drug resistance mechanisms regulated by AR-ERG interaction.


Assuntos
Plasticidade Celular , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Linhagem Celular Tumoral , Linhagem da Célula/efeitos dos fármacos , Plasticidade Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclopentanos/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Masculino , Modelos Biológicos , Proteína NEDD8 , Pirimidinas/farmacologia , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Transcrição Gênica/efeitos dos fármacos , Regulador Transcricional ERG/metabolismo
8.
Sci Rep ; 5: 8336, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25673565

RESUMO

MiRNAs are key regulators of gene expression. By binding to many genes, they create a complex network of gene co-regulation. Here, using a network-based approach, we identified miRNA hub groups by their close connections and common targets. In one cluster containing three miRNAs, miR-612, miR-661 and miR-940, the annotated functions of the co-regulated genes suggested a role in small GTPase signalling. Although the three members of this cluster targeted the same subset of predicted genes, we showed that their overexpression impacted cell fates differently. miR-661 demonstrated enhanced phosphorylation of myosin II and an increase in cell invasion, indicating a possible oncogenic miRNA. On the contrary, miR-612 and miR-940 inhibit phosphorylation of myosin II and cell invasion. Finally, expression profiling in human breast tissues showed that miR-940 was consistently downregulated in breast cancer tissues.


Assuntos
Citoesqueleto de Actina/genética , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Citoesqueleto de Actina/metabolismo , Neoplasias da Mama/metabolismo , Movimento Celular/genética , Proliferação de Células , Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Anotação de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Transdução de Sinais
9.
Sci Rep ; 5: 14221, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26382112

RESUMO

Phenotypic screening monitors phenotypic changes induced by perturbations, including those generated by drugs or RNA interference. Currently-used methods for scoring screen hits have proven to be problematic, particularly when applied to physiologically relevant conditions such as low cell numbers or inefficient transfection. Here, we describe the Φ-score, which is a novel scoring method for the identification of phenotypic modifiers or hits in cell-based screens. Φ-score performance was assessed with simulations, a validation experiment and its application to gene identification in a large-scale RNAi screen. Using robust statistics and a variance model, we demonstrated that the Φ-score showed better sensitivity, selectivity and reproducibility compared to classical approaches. The improved performance of the Φ-score paves the way for cell-based screening of primary cells, which are often difficult to obtain from patients in sufficient numbers. We also describe a dedicated merging procedure to pool scores from small interfering RNAs targeting the same gene so as to provide improved visualization and hit selection.

10.
Biomaterials ; 34(38): 10099-108, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24060421

RESUMO

The behaviour of cancerous epithelial prostatic cells (PC3) growing on polyelectrolytes (PE) coatings was compared to the behaviour of immortalized normal prostatic cells (PNT-2). The cell behaviour was evaluated and quantified in terms of initial cell attachment, growth, metabolic activity, morphometry, adhesion, apoptosis and stress related gene expression. Both the anionic PSS (poly(sodium 4-styrenesulphonate))-terminated surface and cationic PAH (poly(allylamine hydrochloride))-terminated surfaces were not cytotoxic. The initial attachment of cells was better on the PAH-terminated surface compared to fibronectin. However, the proliferation rate of PC3 cells was reduced on the PAH-terminated surface and slightly increased on the PSS coatings. Only PAH prevented the clustering phenotype of PC3 and reduced the number of focal adhesion points as compared to fibronectin or PSS coatings. In contrast, none of the PE surfaces significantly affected the biological responses of PNT-2 cells. PAH-terminating films provide a tool to preferentially modulate the growth of some cancerous phenotypes, in this case as a micro-environment that reduces the growth of metastatic PC3 cells.


Assuntos
Polímeros/química , Polímeros/farmacologia , Próstata/patologia , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Masculino , Modelos Teóricos , Polímeros/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Ratos
11.
PLoS One ; 7(9): e45761, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029228

RESUMO

The p63 protein plays a key role in regulating human keratinocyte proliferation and differentiation. Although some p63-regulating microRNAs (miRNAs) have been identified in the control of epidermal homeostasis, little is known about miRNAs acting downstream of p63. In this paper, we characterized multiple p63-regulated miRNAs (miR-17, miR-20b, miR-30a, miR-106a, miR-143 and miR-455-3p) and elucidated their roles in the onset of keratinocyte differentiation. We identified RB, p21 and multiple MAPKs as targets of these p63-controlled miRNAs. Upon inhibition of most of these miRNAs, we observed defects in commitment to differentiation that could be reversed by siRNA-mediated silencing of their targets. Furthermore, knockdown of MAPK8 and MAPK9 efficiently restored expression of the early differentiation markers keratin 1 and keratin 10 in p63-silenced primary human keratinocytes. These results highlight new mechanistic roles of multiple miRNAs, particularly the miR-17 family (miR-17, miR-20b and miR-106a), as regulatory intermediates for coordinating p63 with MAPK signaling in the commitment of human mature keratinocytes to early differentiation.


Assuntos
Diferenciação Celular , Queratinócitos/fisiologia , Sistema de Sinalização das MAP Quinases , MicroRNAs/fisiologia , Interferência de RNA , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Linhagem Celular , Humanos , Queratinócitos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/genética , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Transcriptoma , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia
12.
Biomaterials ; 31(12): 3156-65, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20149429

RESUMO

We report the fabrication of a 3D micropatterned agarose substrate that enables the culture of single or multiple cells. Patterning was performed on dried agarose using deep UV irradiation leading to 6-microm-deep micropatterns of 25-70 microm in diameter. Cell adhesion was facilitated by the specific grafting of ECM (extra cellular matrix) proteins such as fibronectin into the micropatterns. We show that the pattern size induced the adhesion of one or more cells, thus allowing precise control of the cell number used in the assay, and that cells proliferated similarly as in standard culture conditions. Moreover, cell polarity appeared well preserved on this substrate, so polarized cells like hepatoma HepaRG cells might maintain their differentiation status and act as primary human hepatocytes for hepatotoxicity testing. These 3D patterned culture slides have been successfully used for in situ comet assays and there is evidence that the genotoxic effects of sub-cytotoxic concentrations of drugs could be analyzed in a large number of single HeLa cells. Coupled with the parallel-based design of the 3D micropatterning, which allows automated image analysis, these results strongly indicate that this new cell array system is suitable for high-throughput cytotoxicity and genotoxicity screening applications.


Assuntos
Ensaio Cometa , Sefarose/química , Linhagem Celular Tumoral , Proteínas da Matriz Extracelular/química , Corantes Fluorescentes , Humanos , Microscopia Confocal , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA