Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(2): 101550, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973333

RESUMO

The malaria-causing parasite Plasmodium falciparum is responsible for over 200 million infections and 400,000 deaths per year. At multiple stages during its complex life cycle, P. falciparum expresses several essential proteins tethered to its surface by glycosylphosphatidylinositol (GPI) anchors, which are critical for biological processes such as parasite egress and reinvasion of host red blood cells. Targeting this pathway therapeutically has the potential to broadly impact parasite development across several life stages. Here, we characterize an upstream component of parasite GPI anchor biosynthesis, the putative phosphomannomutase (PMM) (EC 5.4.2.8), HAD5 (PF3D7_1017400). We confirmed the PMM and phosphoglucomutase activities of purified recombinant HAD5 by developing novel linked enzyme biochemical assays. By regulating the expression of HAD5 in transgenic parasites with a TetR-DOZI-inducible knockdown system, we demonstrated that HAD5 is required for malaria parasite egress and erythrocyte reinvasion, and we assessed the role of HAD5 in GPI anchor synthesis by autoradiography of radiolabeled glucosamine and thin layer chromatography. Finally, we determined the three-dimensional X-ray crystal structure of HAD5 and identified a substrate analog that specifically inhibits HAD5 compared to orthologous human PMMs in a time-dependent manner. These findings demonstrate that the GPI anchor biosynthesis pathway is exceptionally sensitive to inhibition in parasites and that HAD5 has potential as a specific, multistage antimalarial target.


Assuntos
Fosfotransferases (Fosfomutases) , Plasmodium falciparum , Proteínas de Protozoários , Animais , Eritrócitos/parasitologia , Glicosilfosfatidilinositóis/metabolismo , Humanos , Malária Falciparum/parasitologia , Fosfotransferases (Fosfomutases)/genética , Fosfotransferases (Fosfomutases)/metabolismo , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
2.
Am J Transplant ; 22(12): 3150-3169, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35822346

RESUMO

The last decade has seen an explosion of advanced assays for the diagnosis of infectious diseases, yet evidence-based recommendations to inform their optimal use in the care of transplant recipients are lacking. A consensus conference sponsored by the American Society of Transplantation (AST) was convened on December 7, 2021, to define the utility of novel infectious disease diagnostics in organ transplant recipients. The conference represented a collaborative effort by experts in transplant infectious diseases, diagnostic stewardship, and clinical microbiology from centers across North America to evaluate current uses, unmet needs, and future directions for assays in 5 categories including (1) multiplex molecular assays, (2) rapid antimicrobial resistance detection methods, (3) pathogen-specific T-cell reactivity assays, (4) next-generation sequencing assays, and (5) mass spectrometry-based assays. Participants reviewed and appraised available literature, determined assay advantages and limitations, developed best practice guidance largely based on expert opinion for clinical use, and identified areas of future investigation in the setting of transplantation. In addition, attendees emphasized the need for well-designed studies to generate high-quality evidence needed to guide care, identified regulatory and financial barriers, and discussed the role of regulatory agencies in facilitating research and implementation of these assays. Findings and consensus statements are presented.


Assuntos
Transplante de Órgãos , Transplantes , Humanos , Transplantados , Consenso , Transplante de Órgãos/efeitos adversos , América do Norte
3.
PLoS Pathog ; 16(4): e1008482, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32310999

RESUMO

The emergence of artemisinin (ART) resistance in Plasmodium falciparum intra-erythrocytic parasites has led to increasing treatment failure rates with first-line ART-based combination therapies in Southeast Asia. Decreased parasite susceptibility is caused by K13 mutations, which are associated clinically with delayed parasite clearance in patients and in vitro with an enhanced ability of ring-stage parasites to survive brief exposure to the active ART metabolite dihydroartemisinin. Herein, we describe a panel of K13-specific monoclonal antibodies and gene-edited parasite lines co-expressing epitope-tagged versions of K13 in trans. By applying an analytical quantitative imaging pipeline, we localize K13 to the parasite endoplasmic reticulum, Rab-positive vesicles, and sites adjacent to cytostomes. These latter structures form at the parasite plasma membrane and traffic hemoglobin to the digestive vacuole wherein artemisinin-activating heme moieties are released. We also provide evidence of K13 partially localizing near the parasite mitochondria upon treatment with dihydroartemisinin. Immunoprecipitation data generated with K13-specific monoclonal antibodies identify multiple putative K13-associated proteins, including endoplasmic reticulum-resident molecules, mitochondrial proteins, and Rab GTPases, in both K13 mutant and wild-type isogenic lines. We also find that mutant K13-mediated resistance is reversed upon co-expression of wild-type or mutant K13. These data help define the biological properties of K13 and its role in mediating P. falciparum resistance to ART treatment.


Assuntos
Resistência a Medicamentos/genética , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos/fisiologia , Humanos , Malária Falciparum/parasitologia , Mutação , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo
4.
PLoS Pathog ; 16(6): e1007806, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32497104

RESUMO

Coagulase-positive staphylococci, which frequently colonize the mucosal surfaces of animals, also cause a spectrum of opportunistic infections including skin and soft tissue infections, urinary tract infections, pneumonia, and bacteremia. However, recent advances in bacterial identification have revealed that these common veterinary pathogens are in fact zoonoses that cause serious infections in human patients. The global spread of multidrug-resistant zoonotic staphylococci, in particular the emergence of methicillin-resistant organisms, is now a serious threat to both animal and human welfare. Accordingly, new therapeutic targets that can be exploited to combat staphylococcal infections are urgently needed. Enzymes of the methylerythritol phosphate pathway (MEP) of isoprenoid biosynthesis represent potential targets for treating zoonotic staphylococci. Here we demonstrate that fosmidomycin (FSM) inhibits the first step of the isoprenoid biosynthetic pathway catalyzed by deoxyxylulose phosphate reductoisomerase (DXR) in staphylococci. In addition, we have both enzymatically and structurally determined the mechanism by which FSM elicits its effect. Using a forward genetic screen, the glycerol-3-phosphate transporter GlpT that facilitates FSM uptake was identified in two zoonotic staphylococci, Staphylococcus schleiferi and Staphylococcus pseudintermedius. A series of lipophilic ester prodrugs (termed MEPicides) structurally related to FSM were synthesized, and data indicate that the presence of the prodrug moiety not only substantially increased potency of the inhibitors against staphylococci but also bypassed the need for GlpT-mediated cellular transport. Collectively, our data indicate that the prodrug MEPicides selectively and robustly inhibit DXR in zoonotic staphylococci, and further, that DXR represents a promising, druggable target for future development.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Pró-Fármacos , Infecções Estafilocócicas , Staphylococcus , Zoonoses , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/metabolismo , Staphylococcus/genética , Staphylococcus/crescimento & desenvolvimento , Zoonoses/tratamento farmacológico , Zoonoses/genética , Zoonoses/metabolismo , Zoonoses/microbiologia
5.
Clin Chem ; 68(1): 43-51, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34969107

RESUMO

BACKGROUND: Starkly highlighted by the current COVID-19 pandemic, infectious diseases continue to have an outsized impact on human health worldwide. Diagnostic testing for infection can be challenging due to resource limitations, time constraints, or shortcomings in the accuracy of existing diagnostics. Rapid, simple diagnostics are highly desirable. There is increasing interest in the development of diagnostics that use exhaled breath analysis as a convenient and safe diagnostic method, as breath sampling is noninvasive, secure, and easy to perform. Volatile organic compounds (VOCs) present in exhaled breath reflect the fingerprint of the underlying metabolic and biophysical processes during disease. CONTENT: In this review, we overview the major biomarkers present in exhaled breath in infectious diseases. We outline the promising recent advances in breath-based diagnosis of respiratory infections, including those caused by influenza virus, SARS-CoV-2, Mycobacterium tuberculosis, Pseudomonas aeruginosa, and Aspergillus fumigatus. In addition, we review the current landscape of diagnosis of 2 other globally important infections: Helicobacter pylori gastrointestinal infection and malaria. SUMMARY: Characteristic and reproducible breath VOCs are associated with several infectious diseases, suggesting breath analysis as a promising strategy for diagnostic development. Ongoing challenges include poor standardization of breath collection and analysis and lack of validation studies. Further research is required to expand the applicability of breath analysis to clinical settings.


Assuntos
Testes Respiratórios , Doenças Transmissíveis/diagnóstico , Compostos Orgânicos Voláteis , Expiração , Humanos , Compostos Orgânicos Voláteis/análise
6.
Pediatr Emerg Care ; 36(11): 554-558, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32970023

RESUMO

OBJECTIVE: The aim of the study was to compare presenting clinical and laboratory features among children meeting the surveillance definition for multisystem inflammatory syndrome in children (MIS-C) across a range of illness severities. METHODS: This is a retrospective single-center study of patients younger than 21 years presenting between March 1 and May 15, 2020. Included patients met the Centers for Disease Control and Prevention criteria for MIS-C (inflammation, fever, involvement of 2 organ systems, lack of alternative diagnoses). We defined 3 subgroups by clinical outcomes: (1) critical illness requiring intensive care interventions; (2) patients meeting Kawasaki disease (KD) criteria but not requiring critical care; and (3) mild illness not meeting either criteria. A comparator cohort included patients with KD at our institution during the same time frame in 2019. RESULTS: Thirty-three patients were included (5, critical; 8, 2020 KD; 20, mild). The median age for the critical group was 10.9 years (2.7 for 2020 KD; 6.0 for mild, P = 0.033). The critical group had lower median absolute lymphocyte count (850 vs 3005 vs 2940/uL, P = 0.005), platelets (150 vs 361 vs 252 k/uL, P = 0.005), and sodium (129 vs 136 vs 136 mmol/L, P = 0.002), and higher creatinine (0.7 vs 0.2 vs 0.3 mg/dL, P = 0.002). In the critical group, 60% required vasoactive medications, and 40% required mechanical ventilation. Clinical and laboratories features were similar between the 2020 and 2019 KD groups. CONCLUSIONS: We describe 3 groups with inflammatory syndromes during the SARS-CoV-2 pandemic. The initial profile of lymphopenia, thrombocytopenia, hyponatremia, and abnormal creatinine may help distinguish critically ill MIS-C patients from classic/atypical KD or more benign acute inflammation.


Assuntos
Betacoronavirus , Infecções por Coronavirus/diagnóstico , Cuidados Críticos/métodos , Gerenciamento Clínico , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Pandemias , Pneumonia Viral/diagnóstico , Adolescente , COVID-19 , Criança , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/terapia , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pneumonia Viral/epidemiologia , Pneumonia Viral/terapia , Estudos Retrospectivos , SARS-CoV-2
8.
Analyst ; 144(6): 2026-2033, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30702091

RESUMO

In this report, we present a post hoc analysis from two observational cohorts, comparing the global breath volatile profile captured when using polymer sampling bags (mixed breath) versus Bio-VOC™ (alveolar breath). The cohorts were originally designed to characterize the breath volatile profiles of Malawian children with and without uncomplicated falciparum malaria. Children aged 3-15 years were recruited from ambulatory pediatric centers in Lilongwe, Malawi. Breath sampling was carried out two months apart (one study using a Bio-VOC™ and the second using sampling bags), and all samples were analyzed by gas chromatography/mass spectrometry. The efficacy of breath collection was assessed by quantifying levels of two high prevalence breath compounds, acetone and isoprene, as well as determining the overall number of breath compounds collected and their abundance. We found that the mean number of volatiles detected using sampling bags was substantially higher than when using the Bio-VOC™ (137 vs. 47). Breath collection by Bio-VOC™ also yielded reduced levels of endogenous breath volatiles, isoprene and acetone, even after breath volume correction. This suggests that the Bio-VOC™ dilutes the volatiles and introduces dead air or ambient air. Our results suggest that sampling bags are better suited for biomarker discovery and untargeted search of volatiles in pediatric populations, as evidenced by superior breath volatile detection.


Assuntos
Biomarcadores/análise , Testes Respiratórios/métodos , Malária Falciparum/diagnóstico , Plasmodium falciparum/isolamento & purificação , Polímeros/química , Compostos Orgânicos Voláteis/análise , Adolescente , Butadienos/análise , Criança , Pré-Escolar , Estudos de Coortes , Cromatografia Gasosa-Espectrometria de Massas , Hemiterpenos/análise , Humanos
10.
J Infect Dis ; 217(10): 1553-1560, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29415208

RESUMO

Current evidence suggests that malarial infection could alter metabolites in the breath of patients, a phenomenon that could be exploited to create a breath-based diagnostic test. However, no study has explored this in a clinical setting. To investigate whether natural human malarial infection leads to a characteristic breath profile, we performed a field study in Malawi. Breath volatiles from children with and those without uncomplicated falciparum malaria were analyzed by thermal desorption-gas chromatography/mass spectrometry. Using an unbiased, correlation-based analysis, we found that children with malaria have a distinct shift in overall breath composition. Highly accurate classification of infection status was achieved with a suite of 6 compounds. In addition, we found that infection correlates with significantly higher breath levels of 2 mosquito-attractant terpenes, α-pinene and 3-carene. These findings attest to the viability of breath analysis for malaria diagnosis, identify candidate biomarkers, and identify plausible chemical mediators for increased mosquito attraction to patients infected with malaria parasites.


Assuntos
Anopheles/patogenicidade , Biomarcadores/química , Biomarcadores/metabolismo , Malária Falciparum/diagnóstico , Malária Falciparum/metabolismo , Odorantes/análise , Compostos Orgânicos Voláteis/química , Animais , Testes Respiratórios/métodos , Criança , Pré-Escolar , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Malária Falciparum/parasitologia , Malaui , Masculino , Plasmodium falciparum/patogenicidade
13.
Virus Evol ; 10(1): veae034, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859985

RESUMO

Seasonal influenza virus predominantly evolves through antigenic drift, marked by the accumulation of mutations at antigenic sites. Because of antigenic drift, influenza vaccines are frequently updated, though their efficacy may still be limited due to strain mismatches. Despite the high levels of viral diversity observed across populations, most human studies reveal limited intrahost diversity, leaving the origin of population-level viral diversity unclear. Previous studies show host characteristics, such as immunity, might affect within-host viral evolution. Here we investigate influenza A viral diversity in children aged between 6 months and 18 years. Influenza virus evolution in children is less well characterized than in adults, yet may be associated with higher levels of viral diversity given the lower level of pre-existing immunity and longer durations of infection in children. We obtained influenza isolates from banked influenza A-positive nasopharyngeal swabs collected at the Children's Hospital of Philadelphia during the 2017-18 influenza season. Using next-generation sequencing, we evaluated the population of influenza viruses present in each sample. We characterized within-host viral diversity using the number and frequency of intrahost single-nucleotide variants (iSNVs) detected in each sample. We related viral diversity to clinical metadata, including subjects' age, vaccination status, and comorbid conditions, as well as sample metadata such as virus strain and cycle threshold. Consistent with previous studies, most samples contained low levels of diversity with no clear association between the subjects' age, vaccine status, or health status. Further, there was no enrichment of iSNVs near known antigenic sites. Taken together, these findings are consistent with previous observations that the majority of intrahost influenza virus infection is characterized by low viral diversity without evidence of diversifying selection.

14.
RSC Med Chem ; 15(7): 2422-2439, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39026652

RESUMO

In Mycobacterium tuberculosis (Mtb) and Plasmodium falciparum (Pf), the methylerythritol phosphate (MEP) pathway is responsible for isoprene synthesis. This pathway and its products are vital to bacterial/parasitic metabolism and survival, and represent an attractive set of drug targets due to their essentiality in these pathogens but absence in humans. The second step in the MEP pathway is the conversion of 1-deoxy-d-xylulose-5-phosphate (DXP) to MEP and is catalyzed by 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR). Natural products fosmidomycin and FR900098 inhibit DXR, but are too polar to reach the desired target inside some cells, such as Mtb. Synthesized FR900098 analogs with lipophilic substitution in the position α to the phosphorous atom showed promise, resulting in increased activity against Mtb and Pf. Here, an α substitution, consisting of a 3,4-dichlorophenyl substituent, in combination with various O-linked alkylaryl substituents on the hydroxamate moiety is utilized in the synthesis of a novel series of FR900098 analogs. The purpose of the O-linked alkylaryl substituents is to further enhance DXR inhibition by extending the structure into the adjacent NADPH binding pocket, blocking the binding of both DXP and NADPH. Of the initial O-linked alkylaryl substituted analogs, compound 6e showed most potent activity against Pf parasites at 3.60 µM. Additional compounds varying the phenyl ring of 6e were synthesized. The most potent phosphonic acids, 6l and 6n, display nM activity against PfDXR and low µM activity against Pf parasites. Prodrugs of these compounds were less effective against Pf parasites but showed modest activity against Mtb cells. Data from this series of compounds suggests that this combination of substituents can be advantageous in designing a new generation of antimicrobials.

15.
medRxiv ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38293197

RESUMO

Multisystem Inflammatory Syndrome in Childhood (MIS-C) follows SARS-CoV-2 infection and frequently leads to intensive care unit admission. The inability to rapidly discriminate MIS-C from similar febrile illnesses delays treatment and leads to misdiagnosis. To identify diagnostic discriminators at the time of emergency department presentation, we enrolled 104 children who met MIS-C screening criteria, 14 of whom were eventually diagnosed with MIS-C. Before treatment, we collected breath samples for volatiles and peripheral blood for measurement of plasma proteins and immune cell features. Clinical and laboratory features were used as inputs for a machine learning model to determine diagnostic importance. MIS-C was associated with significant changes in breath volatile organic compound (VOC) composition as well as increased plasma levels of secretory phospholipase A2 (PLA2G2A) and lipopolysaccharide binding protein (LBP). In an integrated model of all analytes, the proportion of TCRVß21.3+ non-naive CD4 T cells expressing Ki-67 had a high sensitivity and specificity for MIS-C, with diagnostic accuracy further enhanced by low sodium and high PLA2G2A. We anticipate that accurate diagnosis will become increasingly difficult as MIS-C becomes less common. Clinical validation and application of this diagnostic model may improve outcomes in children presenting with multisystem febrile illnesses.

16.
ACS Infect Dis ; 10(3): 1000-1022, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38367280

RESUMO

In this study, we identified three novel compound classes with potent activity against Plasmodium falciparum, the most dangerous human malarial parasite. Resistance of this pathogen to known drugs is increasing, and compounds with different modes of action are urgently needed. One promising drug target is the enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) of the methylerythritol 4-phosphate (MEP) pathway for which we have previously identified three active compound classes against Mycobacterium tuberculosis. The close structural similarities of the active sites of the DXPS enzymes of P. falciparum and M. tuberculosis prompted investigation of their antiparasitic action, all classes display good cell-based activity. Through structure-activity relationship studies, we increased their antimalarial potency and two classes also show good metabolic stability and low toxicity against human liver cells. The most active compound 1 inhibits the growth of blood-stage P. falciparum with an IC50 of 600 nM. The results from three different methods for target validation of compound 1 suggest no engagement of DXPS. All inhibitor classes are active against chloroquine-resistant strains, confirming a new mode of action that has to be further investigated.


Assuntos
Antimaláricos , Malária Falciparum , Tiazóis , Humanos , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Cloroquina , Antimaláricos/farmacologia , Antimaláricos/química
17.
Open Forum Infect Dis ; 10(1): ofac674, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36726546

RESUMO

Diagnosis of acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection relies on detection of viral antigens or amplified viral nucleic acids. Serology, although invaluable for epidemiology, is not routinely needed clinically. However, in some settings, serologic data may have direct clinical utility: for example, in evaluation of persistent symptoms in patients without a prior diagnosis of acute infection. In contrast, SARS-CoV-2 serologic testing is sometimes used or requested in situations in which existing data do not support it, such as determination of need for vaccination. In this study, we describe available methods of serologic testing and provide cases supported by clinical vignettes of where such tests can be helpful, as well as examples where they are not. These examples may help clarify clinical decision making in this rapidly evolving area.

18.
mSphere ; 8(5): e0019423, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37791788

RESUMO

Sore throat is one of the most common complaints encountered in the ambulatory clinical setting. Rapid, culture-independent diagnostic techniques that do not rely on pharyngeal swabs would be highly valuable as a point-of-care strategy to guide outpatient antibiotic treatment. Despite the promise of this approach, efforts to detect volatiles during oropharyngeal infection have yet been limited. In our research study, we sought to evaluate for specific bacterial volatile organic compounds (VOC) biomarkers in isolated cultures in vitro, in order to establish proof-of-concept prior to initial clinical studies of breath biomarkers. A particular challenge for the diagnosis of pharyngitis due to Streptococcus pyogenes is the likelihood that many metabolites may be shared by S. pyogenes and other related oropharyngeal colonizing bacterial species. Therefore, we evaluated whether sufficient metabolic differences are present, which distinguish the volatile metabolome of Group A streptococci from other streptococcal species that also colonize the respiratory mucosa, such as Streptococcus pneumoniae and Streptococcus intermedius. In this work, we identified 27 discriminatory VOCs (q-values < 0.05), composed of aldehydes, alcohols, nitrogen-containing compounds, hydrocarbons, ketones, aromatic compounds, esters, ethers, and carboxylic acid. From this group of volatiles, we identify candidate biomarkers that distinguish S. pyogenes from other species and establish highly produced VOCs that indicate the presence of S. pyogenes in vitro, supporting future breath-based diagnostic testing for streptococcal pharyngitis. IMPORTANCE Acute pharyngitis accounts for approximately 15 million ambulatory care visits in the United States. The most common and important bacterial cause of pharyngitis is Streptococcus pyogenesis, accounting for 15%-30% of pediatric pharyngitis. Distinguishing between bacterial and viral pharyngitis is key to management in US practice. The culture of a specimen obtained by a throat swab is the standard laboratory procedure for the microbiologic confirmation of pharyngitis; however, this method is time-consuming, which delays appropriate treatment. If left untreated, S. pyogenes pharyngitis may lead to local and distant complications. In this study, we characterized the volatile metabolomes of S. pyogenes and other related oropharyngeal colonizing bacterial species. We identify candidate biomarkers that distinguish S. pyogenes from other species and provide evidence to support future breath-based diagnostic testing for streptococcal pharyngitis.


Assuntos
Faringite , Infecções Estreptocócicas , Humanos , Criança , Streptococcus pyogenes , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/microbiologia , Faringite/diagnóstico , Faringite/microbiologia , Antibacterianos/uso terapêutico , Biomarcadores
19.
ACS Infect Dis ; 9(7): 1387-1395, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37310810

RESUMO

Malaria, a mosquito-borne disease caused by several parasites of the Plasmodium genus, remains a huge threat to global public health. There are an estimated 0.5 million malaria deaths each year, mostly among African children. Unlike humans, Plasmodium parasites and a number of important pathogenic bacteria employ the methyl erythritol phosphate (MEP) pathway for isoprenoid synthesis. Thus, the MEP pathway represents a promising set of drug targets for antimalarial and antibacterial compounds. Here, we present new unsaturated MEPicide inhibitors of 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), the second enzyme of the MEP pathway. A number of these compounds have demonstrated robust inhibition of Plasmodium falciparum DXR, potent antiparasitic activity, and low cytotoxicity against HepG2 cells. Parasites treated with active compounds are rescued by isopentenyl pyrophosphate, the product of the MEP pathway. With higher levels of DXR substrate, parasites acquire resistance to active compounds. These results further confirm the on-target inhibition of DXR in parasites by the inhibitors. Stability in mouse liver microsomes is high for the phosphonate salts, but remains a challenge for the prodrugs. Taken together, the potent activity and on-target mechanism of action of this series further validate DXR as an antimalarial drug target and the α,ß-unsaturation moiety as an important structural component.


Assuntos
Antimaláricos , Fosfomicina , Criança , Humanos , Animais , Camundongos , Plasmodium falciparum , Fosfomicina/farmacologia , Fosfomicina/química , Pentosefosfatos/metabolismo , Antimaláricos/farmacologia , Antimaláricos/química
20.
Cell Host Microbe ; 30(8): 1074-1076, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35952645

RESUMO

Tackling the ancient infectious foe of malaria, Xie et al. (2022) uncover a novel class of nucleoside analogs that selectively hijack and inhibit the tyrosine tRNA synthase of the parasite. With high potency, good oral bioavailability, and minimal host cell toxicity, these inhibitors show promise as next-generation antimalarials.


Assuntos
Antimaláricos , Malária , Adenosina , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Humanos , Malária/tratamento farmacológico , Malária/parasitologia , Plasmodium falciparum/genética , Ácidos Sulfônicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA