Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 37(10): e9499, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36852507

RESUMO

RATIONALE: Steam equilibration overcomes the problem of the traditional measurements of H isotope compositions, which leave an arbitrary amount of adsorbed water in the sample, by controlling for the entire exchangeable H pool, including adsorbed water and hydroxyl-H. However, the use of steam equilibration to determine nonexchangeable stable H isotope compositions in environmental media (expressed as δ2 Hn values) by mathematically eliminating the influence of exchangeable H after sample equilibration with waters of known H-isotopic composition requires the knowledge of the equilibrium isotope fractionation factor between steam-H and exchangeable H of the sample (αex-w ), which is frequently unknown. METHODS: We developed a new method to determine the αex-w values for clay minerals, topsoil clay fractions, and mica by manipulating the contributions of exchangeable H to the total H pool via different degrees of post-equilibration sample drying. We measured the δ2 H values of steam-equilibrated mineral and soil samples using elemental analyzer-pyrolysis-isotope ratio mass spectrometry. RESULTS: The αex-w values of seven clay minerals ranged from 1.071 to 1.140, and those of 19 topsoil clay fractions ranged from 0.885 to 1.216. The αex-w value of USGS57 biotite, USGS58 muscovite, and of cellulose was 0.965, 0.871, and 1.175, respectively. The method did not work for kaolinite, because its small exchangeable H pool did not respond to the selected drying conditions. Structurally different mineral groups such as two- and three-layer clay minerals or mica showed systematically different αex-w values. The αex-w value of the topsoil clay fractions correlated with the soil clay content (r = 0.63, P = 0.004), the local mean annual temperature (r = 0.68, P = 0.001), and the δ2 H values of local precipitation (r = 0.72, P < 0.001), likely to reflect the different clay mineralogy under different weathering regimes. CONCLUSIONS: Our new αex-w determination method yielded realistic results in line with the few previously published values for cellulose. The determined αex-w values were similar to the widely assumed values of 1.00-1.08 in the literature, suggesting that the adoption of one of these values in steam equilibration approaches is appropriate.

2.
Proc Natl Acad Sci U S A ; 117(45): 28140-28149, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33093203

RESUMO

Land-use intensification can increase provisioning ecosystem services, such as food and timber production, but it also drives changes in ecosystem functioning and biodiversity loss, which may ultimately compromise human wellbeing. To understand how changes in land-use intensity affect the relationships between biodiversity, ecosystem functions, and services, we built networks from correlations between the species richness of 16 trophic groups, 10 ecosystem functions, and 15 ecosystem services. We evaluated how the properties of these networks varied across land-use intensity gradients for 150 forests and 150 grasslands. Land-use intensity significantly affected network structure in both habitats. Changes in connectance were larger in forests, while changes in modularity and evenness were more evident in grasslands. Our results show that increasing land-use intensity leads to more homogeneous networks with less integration within modules in both habitats, driven by the belowground compartment in grasslands, while forest responses to land management were more complex. Land-use intensity strongly altered hub identity and module composition in both habitats, showing that the positive correlations of provisioning services with biodiversity and ecosystem functions found at low land-use intensity levels, decline at higher intensity levels. Our approach provides a comprehensive view of the relationships between multiple components of biodiversity, ecosystem functions, and ecosystem services and how they respond to land use. This can be used to identify overall changes in the ecosystem, to derive mechanistic hypotheses, and it can be readily applied to further global change drivers.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Modelos Biológicos , Florestas , Pradaria
3.
Nature ; 536(7617): 456-9, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27533038

RESUMO

Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for 'regulating' and 'cultural' services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services. Our results show that multitrophic richness and abundance support ecosystem functioning, and demonstrate that a focus on single groups has led to researchers to greatly underestimate the functional importance of biodiversity.


Assuntos
Biodiversidade , Cadeia Alimentar , Animais , Biomassa , Alemanha , Pradaria , Herbivoria , Insetos , Microbiologia , Modelos Biológicos , Plantas
4.
Oecologia ; 193(3): 731-748, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32737568

RESUMO

Gross rates of nitrogen (N) turnover inform about the total N release and consumption. We investigated how plant diversity affects gross N mineralization, microbial ammonium (NH4+) consumption and gross inorganic N immobilization in grasslands via isotopic pool dilution. The field experiment included 74 plots with 1-16 plant species and 1-4 plant functional groups (legumes, grasses, tall herbs, small herbs). We determined soil pH, shoot height, root, shoot and microbial biomass, and C and N concentrations in soil, microbial biomass, roots and shoots. Structural equation modeling (SEM) showed that increasing plant species richness significantly decreased gross N mineralization and microbial NH4+ consumption rates via increased root C:N ratios. Root C:N ratios increased because of the replacement of legumes (low C:N ratios) by small herbs (high C:N ratios) and an increasing shoot height, which was positively related with root C:N ratios, with increasing species richness. However, in our SEM remained an unexplained direct negative path from species richness to both N turnover rates. The presence of legumes increased gross N mineralization, microbial NH4+ consumption and gross inorganic N immobilization rates likely because of improved N supply by N2 fixation. The positive effect of small herbs on microbial NH4+ consumption and gross inorganic N immobilization could be attributed to their increased rhizodeposition, stimulating microbial growth. Our results demonstrate that increasing root C:N ratios with increasing species richness slow down the N cycle but also that there must be additional, still unidentified processes behind the species richness effect potentially including changed microbial community composition.


Assuntos
Compostos de Amônio , Nitrogênio , Biodiversidade , Biomassa , Pradaria , Solo
5.
Oecologia ; 185(3): 499-511, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28929254

RESUMO

Plant diversity influences many ecosystem functions including root decomposition. However, due to the presence of multiple pathways via which plant diversity may affect root decomposition, our mechanistic understanding of their relationships is limited. In a grassland biodiversity experiment, we simultaneously assessed the effects of three pathways-root litter quality, soil biota, and soil abiotic conditions-on the relationships between plant diversity (in terms of species richness and the presence/absence of grasses and legumes) and root decomposition using structural equation modeling. Our final structural equation model explained 70% of the variation in root mass loss. However, different measures of plant diversity included in our model operated via different pathways to alter root mass loss. Plant species richness had a negative effect on root mass loss. This was partially due to increased Oribatida abundance, but was weakened by enhanced root potassium (K) concentration in more diverse mixtures. Equally, grass presence negatively affected root mass loss. This effect of grasses was mostly mediated via increased root lignin concentration and supported via increased Oribatida abundance and decreased root K concentration. In contrast, legume presence showed a net positive effect on root mass loss via decreased root lignin concentration and increased root magnesium concentration, both of which led to enhanced root mass loss. Overall, the different measures of plant diversity had contrasting effects on root decomposition. Furthermore, we found that root chemistry and soil biota but not root morphology or soil abiotic conditions mediated these effects of plant diversity on root decomposition.


Assuntos
Biodiversidade , Fabaceae/fisiologia , Raízes de Plantas/química , Poaceae/fisiologia , Solo/química , Ecossistema , Microbiologia do Solo
6.
Oecologia ; 182(1): 277-86, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27164912

RESUMO

Plant diversity is an important driver of nitrogen and phosphorus stocks in aboveground plant biomass of grassland ecosystems, but plant diversity effects on other elements also important for plant growth are less understood. We tested whether plant species richness, functional group richness or the presence/absence of particular plant functional groups influences the Si and Ca concentrations (mmol g(-1)) and stocks (mmol m(-2)) in aboveground plant biomass in a large grassland biodiversity experiment (Jena Experiment). In the experiment including 60 temperate grassland species, plant diversity was manipulated as sown species richness (1, 2, 4, 8, 16) and richness and identity of plant functional groups (1-4; grasses, small herbs, tall herbs, legumes). We found positive species richness effects on Si as well as Ca stocks that were attributable to increased biomass production. The presence of particular functional groups was the most important factor explaining variation in aboveground Si and Ca stocks (mmol m(-2)). Grass presence increased the Si stocks by 140 % and legume presence increased the Ca stock by 230 %. Both the presence of specific plant functional groups and species diversity altered Si and Ca stocks, whereas Si and Ca concentration were affected mostly by the presence of specific plant functional groups. However, we found a negative effect of species diversity on Si and Ca accumulation, by calculating the deviation between mixtures and mixture biomass proportions, but in monoculture concentrations. These changes may in turn affect ecosystem processes such as plant litter decomposition and nutrient cycling in grasslands.


Assuntos
Biomassa , Pradaria , Biodiversidade , Ecossistema , Desenvolvimento Vegetal , Poaceae
7.
Ecol Lett ; 18(12): 1356-65, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26415778

RESUMO

Plant species richness (PSR) increases nutrient uptake which depletes bioavailable nutrient pools in soil. No such relationship between plant uptake and availability in soil was found for phosphorus (P). We explored PSR effects on P mobilisation [phosphatase activity (PA)] in soil. PA increased with PSR. The positive PSR effect was not solely due to an increase in Corg concentrations because PSR remained significant if related to PA:Corg . An increase in PA per unit Corg increases the probability of the temporal and spatial match between substrate, enzyme and microorganism potentially serving as an adaption to competition. Carbon use efficiency of microorganisms (Cmic :Corg ) increased with increasing PSR while enzyme exudation efficiency (PA:Cmic ) remained constant. These findings suggest the need for efficient C rather than P cycling underlying the relationship between PSR and PA. Our results indicate that the coupling between C and P cycling in soil becomes tighter with increasing PSR.


Assuntos
Proteínas de Bactérias/metabolismo , Biodiversidade , Monoéster Fosfórico Hidrolases/metabolismo , Fenômenos Fisiológicos Vegetais , Microbiologia do Solo , Alemanha , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Rizosfera , Solo/química
8.
Ecol Lett ; 18(8): 834-843, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26096863

RESUMO

Global change, especially land-use intensification, affects human well-being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real-world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land-use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land-use objectives. We found that indirect land-use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land-use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land-use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast-growing plant species, strongly increased provisioning services in more inherently unproductive grasslands.


Assuntos
Agricultura/métodos , Biodiversidade , Pradaria , Alemanha , Modelos Lineares , Solo/química
9.
Environ Microbiol ; 16(3): 658-75, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23802854

RESUMO

16S rRNA genes and transcripts of Acidobacteria were investigated in 57 grassland and forest soils of three different geographic regions. Acidobacteria contributed 9-31% of bacterial 16S rRNA genes whereas the relative abundances of the respective transcripts were 4-16%. The specific cellular 16S rRNA content (determined as molar ratio of rRNA : rRNA genes) ranged between 3 and 80, indicating a low in situ growth rate. Correlations with flagellate numbers, vascular plant diversity and soil respiration suggest that biotic interactions are important determinants of Acidobacteria 16S rRNA transcript abundances in soils. While the phylogenetic composition of Acidobacteria differed significantly between grassland and forest soils, high throughput denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism fingerprinting detected 16S rRNA transcripts of most phylotypes in situ. Partial least squares regression suggested that chemical soil conditions such as pH, total nitrogen, C : N ratio, ammonia concentrations and total phosphorus affect the composition of this active fraction of Acidobacteria. Transcript abundance for individual Acidobacteria phylotypes was found to correlate with particular physicochemical (pH, temperature, nitrogen or phosphorus) and, most notably, biological parameters (respiration rates, abundances of ciliates or amoebae, vascular plant diversity), providing culture-independent evidence for a distinct niche specialization of different Acidobacteria even from the same subdivision.


Assuntos
Acidobacteria/genética , Acidobacteria/metabolismo , Ecossistema , RNA Ribossômico 16S/genética , Microbiologia do Solo , Árvores/microbiologia , Acidobacteria/classificação , Dados de Sequência Molecular , Nitrogênio/análise , Fósforo/análise , Filogenia , Polimorfismo de Fragmento de Restrição , Solo/química
10.
Environ Sci Technol ; 47(2): 949-57, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23249286

RESUMO

To make use of the isotope ratio of nonexchangeable hydrogen (δ(2)H(n (nonexchangeable))) of bulk soil organic matter (SOM), the mineral matrix (containing structural water of clay minerals) must be separated from SOM and samples need to be analyzed after H isotope equilibration. We present a novel technique for demineralization of soil samples with HF and dilute HCl and recovery of the SOM fraction solubilized in the HF demineralization solution via solid-phase extraction. Compared with existing techniques, organic C (C(org)) and organic N (N(org)) recovery of demineralized SOM concentrates was significantly increased (C(org) recovery using existing techniques vs new demineralization method: 58% vs 78%; N(org) recovery: 60% vs 78%). Chemicals used for the demineralization treatment did not affect δ(2)H(n) values as revealed by spiking with deuterated water. The new demineralization method minimized organic matter losses and thus artificial H isotope fractionation, opening up the opportunity to use δ(2)H(n) analyses of SOM as a new tool in paleoclimatology or geospatial forensics.


Assuntos
Hidrogênio/análise , Minerais/isolamento & purificação , Solo/química , Extração em Fase Sólida/métodos , Deutério/análise , Ácido Clorídrico/química , Ácido Fluorídrico/química , Compostos Orgânicos/química
11.
Oecologia ; 171(2): 473-86, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22898920

RESUMO

The conversion of forest into farmland has resulted in mosaic landscapes in many parts of the tropics. From a conservation perspective, it is important to know whether tropical farmlands can buffer species loss caused by deforestation and how different functional groups of birds respond to land-use intensification. To test the degree of differentiation between farmland and forest bird communities across feeding guilds, we analyzed stable C and N isotopes in blood and claws of 101 bird species comprising four feeding guilds along a tropical forest-farmland gradient in Kenya. We additionally assessed the importance of farmland insectivores for pest control in C(4) crops by using allometric relationships, C stable isotope ratios and estimates of bird species abundance. Species composition differed strongly between forest and farmland bird communities. Across seasons, forest birds primarily relied on C(3) carbon sources, whereas many farmland birds also assimilated C(4) carbon. While C sources of frugivores and omnivores did not differ between forest and farmland communities, insectivores used more C(4) carbon in the farmland than in the forest. Granivores assimilated more C(4) carbon than all other guilds in the farmland. We estimated that insectivorous farmland birds consumed at least 1,000 kg pest invertebrates km(-2) year(-1). We conclude that tropical forest and farmland understory bird communities are strongly separated and that tropical farmlands cannot compensate forest loss for insectivorous forest understory birds. In tropical farmlands, insectivorous bird species provide a quantitatively important contribution to pest control.


Assuntos
Aves , Carbono/metabolismo , Conservação dos Recursos Naturais , Árvores , Agricultura , Animais , Dieta , Quênia , Nitrogênio/metabolismo , Controle de Pragas , Estações do Ano , Clima Tropical
12.
Oecologia ; 173(1): 223-37, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23386044

RESUMO

In order to predict which ecosystem functions are most at risk from biodiversity loss, meta-analyses have generalised results from biodiversity experiments over different sites and ecosystem types. In contrast, comparing the strength of biodiversity effects across a large number of ecosystem processes measured in a single experiment permits more direct comparisons. Here, we present an analysis of 418 separate measures of 38 ecosystem processes. Overall, 45 % of processes were significantly affected by plant species richness, suggesting that, while diversity affects a large number of processes not all respond to biodiversity. We therefore compared the strength of plant diversity effects between different categories of ecosystem processes, grouping processes according to the year of measurement, their biogeochemical cycle, trophic level and compartment (above- or belowground) and according to whether they were measures of biodiversity or other ecosystem processes, biotic or abiotic and static or dynamic. Overall, and for several individual processes, we found that biodiversity effects became stronger over time. Measures of the carbon cycle were also affected more strongly by plant species richness than were the measures associated with the nitrogen cycle. Further, we found greater plant species richness effects on measures of biodiversity than on other processes. The differential effects of plant diversity on the various types of ecosystem processes indicate that future research and political effort should shift from a general debate about whether biodiversity loss impairs ecosystem functions to focussing on the specific functions of interest and ways to preserve them individually or in combination.


Assuntos
Biodiversidade , Plantas/classificação , Ciclo do Carbono , Ecossistema , Cadeia Alimentar , Modelos Lineares , Modelos Teóricos , Ciclo do Nitrogênio , Fenômenos Fisiológicos Vegetais
13.
Mov Ecol ; 11(1): 52, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620899

RESUMO

BACKGROUND: Migratory insects are important for the provision of ecosystem services both at the origin and destination sites but - apart from some iconic species - the migration routes of many insect species have not been assessed. Coastlines serve as a funnel where migrating animals including insects accumulate. Migratory behaviour and captures of dragonflies in bird traps suggest autumn migration of dragonflies along coastlines while the origin and regularity of this migration remain unclear. METHODS: Dragonfly species were caught at the bird observatory Kabli at the Baltic coast in Estonia in 2009, 2010 and 2015. For the 2015 data set, we used a stable hydrogen (H) approach to trace the potential natal origin of the migrant hawker (Aeshna mixta). RESULTS: 1079 (2009), 701 (2010) and 88 (2015) A. mixta individuals were caught during the study periods (35, 37 and 11 days in 2009, 2010 and 2015, respectively). The migration period lasted from end of August to end of September. Based on the results from our stable isotope analysis, we identified two populations of A. mixta: One (range of isotope signatures of non-exchangeable H [δ2Hn wing]: -78‰ to -112‰) had a local likely origin while the other (δ2Hn wing: -113‰ to -147‰) migrated from northerly directions even in headwind from the South. The former showed an even sex ratio whereas the actively migrating population was dominated by males. CONCLUSIONS: Our results suggest a regular southbound autumn migration of A. mixta along the Baltic coast. However, nearly half of the sampled individuals originated from the surroundings suggesting either no, partial or "leap-frog" migration. Contrary to our expectation, A. mixta did not select favourable wind conditions but continued the southbound autumn migration in the flight boundary layer even in case of headwinds. The dominance of males might indicate migration as a result of competition for resources. Further repeated, large-scale studies along the Baltic coast are necessary to pinpoint the migratory pattern and the reason for migration of A. mixta. Such studies should also comprise locations north of the known species range of A. mixta because of the rapid climate-change induced range expansion.

14.
Nat Ecol Evol ; 7(2): 236-249, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36376602

RESUMO

The impact of local biodiversity loss on ecosystem functioning is well established, but the role of larger-scale biodiversity dynamics in the delivery of ecosystem services remains poorly understood. Here we address this gap using a comprehensive dataset describing the supply of 16 cultural, regulating and provisioning ecosystem services in 150 European agricultural grassland plots, and detailed multi-scale data on land use and plant diversity. After controlling for land-use and abiotic factors, we show that both plot-level and surrounding plant diversity play an important role in the supply of cultural and aboveground regulating ecosystem services. In contrast, provisioning and belowground regulating ecosystem services are more strongly driven by field-level management and abiotic factors. Structural equation models revealed that surrounding plant diversity promotes ecosystem services both directly, probably by fostering the spill-over of ecosystem service providers from surrounding areas, and indirectly, by maintaining plot-level diversity. By influencing the ecosystem services that local stakeholders prioritized, biodiversity at different scales was also shown to positively influence a wide range of stakeholder groups. These results provide a comprehensive picture of which ecosystem services rely most strongly on biodiversity, and the respective scales of biodiversity that drive these services. This key information is required for the upscaling of biodiversity-ecosystem service relationships, and the informed management of biodiversity within agricultural landscapes.


Assuntos
Biodiversidade , Ecossistema , Agricultura/métodos , Plantas
15.
Appl Environ Microbiol ; 78(20): 7398-406, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22885760

RESUMO

In soil, Acidobacteria constitute on average 20% of all bacteria, are highly diverse, and are physiologically active in situ. However, their individual functions and interactions with higher taxa in soil are still unknown. Here, potential effects of land use, soil properties, plant diversity, and soil nanofauna on acidobacterial community composition were studied by cultivation-independent methods in grassland and forest soils from three different regions in Germany. The analysis of 16S rRNA gene clone libraries representing all studied soils revealed that grassland soils were dominated by subgroup Gp6 and forest soils by subgroup Gp1 Acidobacteria. The analysis of a large number of sites (n = 57) by 16S rRNA gene fingerprinting methods (terminal restriction fragment length polymorphism [T-RFLP] and denaturing gradient gel electrophoresis [DGGE]) showed that Acidobacteria diversities differed between grassland and forest soils but also among the three different regions. Edaphic properties, such as pH, organic carbon, total nitrogen, C/N ratio, phosphorus, nitrate, ammonium, soil moisture, soil temperature, and soil respiration, had an impact on community composition as assessed by fingerprinting. However, interrelations with environmental parameters among subgroup terminal restriction fragments (T-RFs) differed significantly, e.g., different Gp1 T-RFs correlated positively or negatively with nitrogen content. Novel significant correlations of Acidobacteria subpopulations (i.e., individual populations within subgroups) with soil nanofauna and vascular plant diversity were revealed only by analysis of clone sequences. Thus, for detecting novel interrelations of environmental parameters with Acidobacteria, individual populations within subgroups have to be considered.


Assuntos
Acidobacteria/classificação , Acidobacteria/isolamento & purificação , Biota , Microbiologia do Solo , Acidobacteria/genética , Carbono/análise , Análise por Conglomerados , Impressões Digitais de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Alemanha , Concentração de Íons de Hidrogênio , Metagenoma , Dados de Sequência Molecular , Nitrogênio/análise , Fósforo/análise , Filogenia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/química , Temperatura , Árvores
16.
Environ Sci Process Impacts ; 24(9): 1330-1342, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35262156

RESUMO

In contrast to earlier ideas that halogens behave inertly in soil, extensive biogeochemical cycling of fluorine (F), chlorine (Cl), bromine (Br) and iodine (I) has been shown for temperate forests. To further advance our understanding of halogen behaviour in soil beyond humid temperate forests, we sampled soil profiles in protected areas along the Chilean Coastal Cordillera, representing a pronounced climatic gradient spanning from arid to humid. Halogen concentrations in soil were analysed by combustion ion chromatography. Highest average total halogen concentrations occurred at the arid site (Cl, F: 4270 and 897 mg kg-1) as well as the humid end of the climatic gradient (Br, I: 42.6 and 9.8 mg kg-1). Vertical distribution patterns of halogens were most pronounced at the humid end of the gradient and became less distinct under drier climate. The climatic gradient demonstrates the important role of biotic processes (e.g. the halogenation of organic matter) on the retention of halogens in the soil. However, this climate-specific role may be overridden by mainly abiotic processes within a given climate zone (e.g. weathering, leaching, sorption to secondary soil minerals, evaporative enrichment), resulting in vertical relocation of halogens in the soil. Since some of these processes oppose each other, complex interactions and depth distributions of F, Cl, Br and I occur in the soil. In summary, our findings provide new insights into the fate of halogens in mineral soil of different climatic zones, which is important, for example, when radiohalogens are deposited on a large scale after nuclear accidents.


Assuntos
Bromo , Iodo , Bromo/química , Cloro/química , Flúor , Halogênios/análise , Minerais , Solo
17.
Sci Total Environ ; 836: 155748, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35526633

RESUMO

Grassland ecosystems provide important ecosystem services such as nutrient cycling and primary production that are affected by land-use intensity. To assess the effects of land-use intensity, operational and sensitive ecological indicators that integrate effects of grassland management on ecosystem processes such as organic matter turnover are needed. Here, we investigated the suitability of measuring the mass loss of standardized tea litter together with extracellular enzyme kinetics as a proxy of litter decomposition in the topsoil of grasslands along a well-defined land-use intensity gradient (fertilization, mowing, grazing) in Central Germany. Tea bags containing either green tea (high-quality litter) or rooibos tea (low-quality litter) were buried in 5 cm soil depth. Litter mass loss was measured after three (early-stage decomposition) and 12 months (mid-stage decomposition). Based on the fluorescence measurement of the reaction product 4-methylumbelliferone, Michaelis-Menten enzyme kinetics (Vmax: potential maximum rate of activity; Km: substrate affinity) of five hydrolases involved in the carbon (C)-, nitrogen (N)- and phosphorus (P)-cycle (ß-glucosidase (BG), cellobiohydrolase (CBH), cellotriohydrolase (CTH), 1,4-ß-N-acetylglucosaminidase (NAG), and phosphatase (PH)) were determined in tea litter bags and in the surrounding soil. The land-use intensity index (LUI), summarizing fertilization, mowing, grazing, and in particular the frequency of mowing were identified as important drivers of early-stage tea litter decomposition. Mid-stage decomposition was influenced by grazing intensity. The higher the potential activity of all measured C-, N- and P-targeting enzymes, the higher was the decomposition of both tea litters in the early-phase. During mid-stage decomposition, individual enzyme parameters (Vmax of CTH and PH, Km of CBH) became more important. The tea bag method proved to be a suitable indicator which allows an easy and cost-effective assessment of land-use intensity effects on decay processes in manged grasslands. In combination with enzyme kinetics it is an appealing approach to identify mechanisms driving litter break down.


Assuntos
Ecossistema , Pradaria , Cinética , Nitrogênio/análise , Folhas de Planta/química , Solo , Chá
18.
Front Microbiol ; 13: 715637, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185839

RESUMO

Acidobacteria occur in a large variety of ecosystems worldwide and are particularly abundant and highly diverse in soils. In spite of their diversity, only few species have been characterized to date which makes Acidobacteria one of the most poorly understood phyla among the domain Bacteria. We used a culture-independent niche modeling approach to elucidate ecological adaptations and their evolution for 4,154 operational taxonomic units (OTUs) of Acidobacteria across 150 different, comprehensively characterized grassland soils in Germany. Using the relative abundances of their 16S rRNA gene transcripts, the responses of active OTUs along gradients of 41 environmental variables were modeled using hierarchical logistic regression (HOF), which allowed to determine values for optimum activity for each variable (niche optima). By linking 16S rRNA transcripts to the phylogeny of full 16S rRNA gene sequences, we could trace the evolution of the different ecological adaptations during the diversification of Acidobacteria. This approach revealed a pronounced ecological diversification even among acidobacterial sister clades. Although the evolution of habitat adaptation was mainly cladogenic, it was disrupted by recurrent events of convergent evolution that resulted in frequent habitat switching within individual clades. Our findings indicate that the high diversity of soil acidobacterial communities is largely sustained by differential habitat adaptation even at the level of closely related species. A comparison of niche optima of individual OTUs with the phenotypic properties of their cultivated representatives showed that our niche modeling approach (1) correctly predicts those physiological properties that have been determined for cultivated species of Acidobacteria but (2) also provides ample information on ecological adaptations that cannot be inferred from standard taxonomic descriptions of bacterial isolates. These novel information on specific adaptations of not-yet-cultivated Acidobacteria can therefore guide future cultivation trials and likely will increase their cultivation success.

19.
mSystems ; 6(5): e0101821, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34636675

RESUMO

Discovery of novel antibiotics is crucial for combating rapidly spreading antimicrobial resistance and new infectious diseases. Most of the clinically used antibiotics are natural products-secondary metabolites produced by soil microbes that can be cultured in the lab. Rediscovery of these secondary metabolites during discovery expeditions costs both time and resources. Metagenomics approaches can overcome this challenge by capturing both culturable and unculturable hidden microbial diversity. To be effective, such an approach should address questions like the following. Which sequencing method is better at capturing the microbial diversity and biosynthesis potential? What part of the soil should be sampled? Can patterns and correlations from such big-data explorations guide future novel natural product discovery surveys? Here, we address these questions by a paired amplicon and shotgun metagenomic sequencing survey of samples from soil horizons of multiple forest sites very close to each other. Metagenome mining identified numerous novel biosynthetic gene clusters (BGCs) and enzymatic domain sequences. Hybrid assembly of both long reads and short reads improved the metagenomic assembly and resulted in better BGC annotations. A higher percentage of novel domains was recovered from shotgun metagenome data sets than from amplicon data sets. Overall, in addition to revealing the biosynthetic potential of soil microbes, our results suggest the importance of sampling not only different soils but also their horizons to capture microbial and biosynthetic diversity and highlight the merits of metagenome sequencing methods. IMPORTANCE This study helped uncover the biosynthesis potential of forest soils via exploration of shotgun metagenome and amplicon sequencing methods and showed that both methods are needed to expose the full microbial diversity in soil. Based on our metagenome mining results, we suggest revising the historical strategy of sampling soils from far-flung places, as we found a significant number of novel and diverse BGCs and domains even in different soils that are very close to each other. Furthermore, sampling of different soil horizons can reveal the additional diversity that often remains hidden and is mainly caused by differences in environmental key parameters such as soil pH and nutrient content. This paired metagenomic survey identified diversity patterns and correlations, a step toward developing a rational approach for future natural product discovery surveys.

20.
Water Res ; 209: 117930, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34894444

RESUMO

Increasing numbers of studies have reported groundwater with naturally high phosphorous (P) and arsenic (As) concentrations, which can potentially threaten the environment and human health. However, the cycling of P and its interactions with As in groundwater under changing redox conditions remain largely unknown. In this study, 83 groundwater samples and 14 sediment samples were collected from the Hetao Basin, Inner Mongolia, for systematic hydrogeochemical investigation and complementary geochemical evaluation. The results showed that P cycling in floodplain aquifers was tightly constrained by redox conditions. Under oxic/suboxic conditions, mineralization of organic matter and weathering of P-bearing minerals were the two dominant processes that mobilized considerable amounts of P in groundwater. When redox conditions became reducing, Fe(III)-oxide reduction dominated, resulting in enrichment of both P and As in groundwater. In Fe(III)-reducing conditions, secondary Ca/Fe(II)-minerals might serve as an important sink for P. When redox conditions became SO42--reducing, preferential adsorption and incorporation of P over As on Fe(II)-sulfides might constrain the As immobilization pathway, resulting in immediate retardation of P and hysteretic immobilization of As. This P-immobilization pathway in natural aquifers has not been described before. This study provides novel insights into P cycling and As enrichment in groundwater systems. Understanding the roles of Fe(II)- and S(-II)-minerals in the immobilization of and interaction between P and As in response to SO42- reduction may help to inspire effective in-situ remediation of contaminated groundwater, in which P and As coexist and remain mobile for decades or longer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA