Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Ann Bot ; 129(3): 271-286, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-34417794

RESUMO

BACKGROUND AND AIMS: Plant diseases caused by Pectobacterium atrosepticum are often accompanied by extensive rot symptoms. In addition, these bacteria are able to interact with host plants without causing disease for long periods, even throughout several host plant generations. There is, to date, no information on the comparative physiology/biochemistry of symptomatic and asymptomatic plant-P. atrosepticum interactions. Typical (symptomatic) P. atrosepticum infections are associated with the induction of plant responses mediated by jasmonates, which are one of the products of the lipoxygenase cascade that gives origin to many other oxylipins with physiological activities. In this study, we compared the functioning of the lipoxygenase cascade following typical and latent (asymptomatic) infections to gain better insight into the physiological basis of the asymptomatic and antagonistic coexistence of plants and pectobacteria. METHODS: Tobacco plants were mock-inoculated (control) or infected with the wild type P. atrosepticum (typical infection) or its coronafacic acid-deficient mutant (latent infection). The expression levels of the target lipoxygenase cascade-related genes were assessed by Illumina RNA sequencing. Oxylipin profiles were analysed by GC-MS. With the aim of revising the incorrect annotation of one of the target genes, its open reading frame was cloned to obtain the recombinant protein, which was further purified and characterized using biochemical approaches. KEY RESULTS: The obtained data demonstrate that when compared to the typical infection, latent asymptomatic P. atrosepticum infection is associated with (and possibly maintained due to) decreased levels of 9-lipoxygenase branch products and jasmonic acid and increased level of cis-12-oxo-10,15-phytodienoic acid. The formation of 9-oxononanoic acid and epoxyalcohols in tobacco plants was based on the identification of the first tobacco hydroperoxide lyase (HPL) with additional epoxyalcohol synthase (EAS) activity. CONCLUSIONS: Our results contribute to the hypothesis of the oxylipin signature, indicating that different types of plant interactions with a particular pathogen are characterized by the different oxylipin profiles of the host plant. In addition, the tobacco LOC107825278 gene was demonstrated to encode an NtHPL (CYP74C43) enzyme yielding volatile aldehydes and aldoacids (HPL products) as well as oxiranyl carbinols (EAS products).


Assuntos
Lipoxigenase , Pectobacterium , Lipoxigenase/genética , Lipoxigenase/metabolismo , Pectobacterium/metabolismo , Doenças das Plantas/microbiologia , Nicotiana
2.
Biochim Biophys Acta ; 1851(9): 1262-70, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26008579

RESUMO

Profiling of oxylipins from young maize roots revealed complex patterns of products mainly originating from the combined actions of 9- and 13-lipoxygenases and allene oxide synthase (AOS). A distinctive feature was the high content of the cyclopentenone 10-oxo-11-phytoenoic acid (10-oxo-PEA). Incubations with [1-14C]linoleic acid led to the formation of the α-ketols 13-hydroxy-12-oxo-9-octadecenoic acid and 9-hydroxy-10-oxo-12-octadecenoic acid as well as the cyclopentenones 12-oxo-10-phytoenoic acid (12-oxo-PEA) and 10-oxo-PEA in a ratio of 10:2:1:3. Chiral phase radio-HPLC showed that the labeled 10-oxo-PEA was mainly (93%) due to the 9S,13S-enantiomer, whereas 12-oxo-PEA was racemic. Recombinant maize AOS CYP74A19 (ZmAOS2) converted linoleic acid 9(S)-hydroperoxide (9-HPOD) into an allene oxide, 9,10-epoxy-10,12-octadecadienoic acid (9,10-EOD), which did not undergo cyclization but was solely hydrolyzed into the α-ketol. A cyclase activity promoting the conversion of 9,10-EOD into (9S,13S)-10-oxo-PEA was detected in the 10(5)×g supernatant prepared by differential centrifugation of the maize root homogenate. The data obtained suggested the existence of a new type of allene oxide cyclase, which is active towards an allene oxide formed from a 9-lipoxygenase-derived hydroperoxide.


Assuntos
Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Oxirredutases Intramoleculares/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Zea mays/metabolismo , Cromatografia Líquida de Alta Pressão , Ácidos Graxos Insaturados/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Oxirredutases Intramoleculares/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Ácidos Linoleicos/metabolismo , Metabolismo dos Lipídeos , Peróxidos Lipídicos/metabolismo , Lipoxigenase/genética , Lipoxigenase/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Estereoisomerismo , Zea mays/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-32464332

RESUMO

The CYP74B subfamily of fatty acid hydroperoxide transforming cytochromes P450 includes the most common plant enzymes. All CYP74Bs studied yet except the CYP74B16 (flax divinyl ether synthase, LuDES) and the CYP74B33 (carrot allene oxide synthase, DcAOS) are 13-hydroperoxide lyases (HPLs, synonym: hemiacetal synthases). The results of present work demonstrate that additional products (except the HPL products) of fatty acid hydroperoxides conversion by the recombinant StHPL (CYP74B3, Solanum tuberosum), MsHPL (CYP74B4v1, Medicago sativa), and CsHPL (CYP74B6, Cucumis sativus) are epoxyalcohols. MsHPL, StHPL, and CsHPL converted the 13-hydroperoxides of linoleic (13-HPOD) and α-linolenic acids (13-HPOT) primarily to the chain cleavage products. The minor by-products of 13-HPOD and 13-HPOT conversions by these enzymes were the oxiranyl carbinols, 11-hydroxy-12,13-epoxy-9-octadecenoic and 11-hydroxy-12,13-epoxy-9,15-octadecadienoic acid. At the same time, all enzymes studied converted 9-hydroperoxides into corresponding oxiranyl carbinols with HPL by-products. Thus, the results showed the additional epoxyalcohol synthase activity of studied CYP74B enzymes. The 13-HPOD conversion reliably resulted in smaller yields of the HPL products and bigger yields of the epoxyalcohols compared to the 13-HPOT transformation. Overall, the results show the dualistic HPL/EAS behaviour of studied CYP74B enzymes, depending on hydroperoxide isomerism and unsaturation.


Assuntos
Cucumis sativus/enzimologia , Sistema Enzimático do Citocromo P-450/química , Peróxidos Lipídicos/química , Proteínas de Plantas/química , Solanum tuberosum/enzimologia , Clonagem Molecular , Cucumis sativus/genética , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Plantas/genética , RNA de Plantas , Proteínas Recombinantes/química , Solanum tuberosum/genética
4.
Phytochemistry ; 69(16): 2793-8, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18952245

RESUMO

Incubations of linoleic acid with cell-free preparations from Lily-of-the-Valley (Convallaria majalis L., Ruscaceae) roots revealed the presence of 13-lipoxygenase and divinyl ether synthase (DES) activities. Exogenous linoleic acid was metabolized predominantly into (9Z,11E,1'E)-12-(1'-hexenyloxy)-9,11-dodecadienoic (etheroleic) acid. Its identification was confirmed by the data of ultraviolet spectroscopy, mass spectra, (1)H NMR, COSY, catalytic hydrogenation. The isomeric divinyl ether (8E,1'E,3'Z)-12-(1',3'-nonadienyloxy)-8-nonenoic (colneleic) acid was detected as a minor product. Incubations with linoleic acid hydroperoxides revealed that 13-hydroperoxide was a preferential substrate, while the 9-hydroperoxide was utilized with lesser efficiency.


Assuntos
Convallaria/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Plantas/metabolismo , Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Oxirredutases Intramoleculares/química , Ácido Linoleico/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Raízes de Plantas/enzimologia , Especificidade por Substrato
5.
ChemistryOpen ; 7(5): 336-343, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29744285

RESUMO

Young roots of wheat, barley, and sorghum, as well as methyl jasmonate pretreated rice seedlings, undergo an unprecedented allene oxide synthase pathway targeted to previously unknown oxylipins 1-3. These Favorskii-type products, (4Z)-2-pentyl-4-tridecene-1,13-dioic acid (1), (2'Z)-2-(2'-octenyl)-decane-1,10-dioic acid (2), and (2'Z,5'Z)-2-(2',5'-octadienyl)-decane-1,10-dioic acid (3), have a carboxy function at the side chain, as revealed by their MS and NMR spectral data. Compounds 1-3 were the major oxylipins detected, along with the related α-ketols. Products 1-3 were biosynthesized from (9Z,11E,13S)-13-hydroperoxy-9,11-octadecadienoic acid, (9S,10E,12Z)-9-hydroperoxy-10,12-octadecadienoic acid (9-HPOD), and (9S,10E,12Z,15Z)-9-hydroperoxy-10,12,15-octadecatrienoic acid, respectively, via the corresponding allene oxides and cyclopropanones. The data indicate that conversion of the allene oxide into the cyclopropanone is controlled by soluble cyclase. The short-lived cyclopropanones are hydrolyzed to products 1-3. The collective name "graminoxins" has been ascribed to oxylipins 1-3.

6.
Chembiochem ; 8(18): 2275-80, 2007 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-17957816

RESUMO

The lipoxygenase pathway in sunflower roots was studied in vitro. A preliminary incubation of linoleic acid with 15 000 g supernatant of homogenate of sunflower roots (1.5-6 days after germination) revealed the predominant activity of 13-lipoxygenase. The exogenously added linoleic acid 13-hydroperoxide is further utilized through two competing pathways. One of them is directed towards formation of the ketodiene (9Z,11E)-13-oxooctadeca-9,11-dienoic acid. The second pathway, which is controlled by allene oxide synthase, leads to the formation of an alpha-ketol and a novel cyclopentenone, rac-cis-12-oxo-10-phytoenoic acid (12-oxo-PEA) via a short-lived allene oxide. Unexpectedly, the cyclopentenone 12-oxo-PEA is the predominant allene oxide synthase product. Identification of cis-12-oxo-PEA was confirmed by its UV, mass, (1)H NMR and 2D-COSY spectral data. The highest yield of 12-oxo-PEA is observed in very young roots (1.5-2 days after germination). The results of methanol-trapping experiments demonstrate that both 12-oxo-PEA and alpha-ketol are formed through the unstable allene oxide intermediate, (9Z)-12,13-epoxyoctadeca-9,11-dienoic acid, which is the primary product of allene oxide synthase. Since 12-oxo-PEA is a jasmonate congener, its biosynthesis in plants might be of physiological importance.


Assuntos
Ciclopentanos/química , Ácidos Graxos Insaturados/química , Helianthus/metabolismo , Ácido Linoleico/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais , Ácidos Graxos Insaturados/biossíntese , Helianthus/química , Ácido Linoleico/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Raízes de Plantas/química , Fatores de Tempo
7.
Phytochemistry ; 118: 42-50, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26277770

RESUMO

Green tissues of spikemoss Selaginella martensii Spring possessed the complex oxylipins patterns. Major oxylipins were the products of linoleic and α-linolenic acids metabolism via the sequential action of 13-lipoxygenase and divinyl ether synthase (DES) or allene oxide synthase (AOS). AOS products were represented by 12-oxophytodienoic acid (12-oxo-PDA) isomers. Exceptionally, S. martensii possesses high level of 12-oxo-9(13),15-PDA, which is very uncommon in flowering plants. Separate divinyl ethers were purified after micro-preparative incubations of linoleic or α-linolenic acids with homogenate of S. martensii aerial parts. The NMR data allowed us to identify all geometric isomers of divinyl ethers. Linoleic acid was converted to divinyl ethers etheroleic acid, (11Z)-etheroleic acid and a minority of (ω5Z)-etheroleic acid. With α-linolenate precursor, the specificity of divinyl ether biosynthesis was distinct. Etherolenic and (ω5Z)-etherolenic acids were the prevailing products while (11Z)-etherolenic acid was a minor one. Divinyl ethers are detected first time in non-flowering land plant. These are the first observations of fatty acid metabolism through the lipoxygenase pathway in spikemosses (Lycopodiophyta).


Assuntos
Ciclopentanos/análise , Ácidos Graxos Insaturados/análise , Oxilipinas , Selaginellaceae/química , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Graxos Insaturados/química , Oxirredutases Intramoleculares/metabolismo , Ácido Linoleico/análise , Lipoxigenase , Ressonância Magnética Nuclear Biomolecular , Oxilipinas/análise , Oxilipinas/química , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Selaginellaceae/metabolismo , Compostos de Vinila/análise , Ácido alfa-Linolênico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA