Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 42(4): 581-600, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34857649

RESUMO

Proprioception, the sense of limb and body position, generates a map of the body that is essential for proper motor control, yet we know little about precisely how neurons in proprioceptive pathways are wired. Defining the anatomy of secondary neurons in the spinal cord that integrate and relay proprioceptive and potentially cutaneous information from the periphery to the cerebellum is fundamental to understanding how proprioceptive circuits function. Here, we define the unique anatomic trajectories of long-range direct and indirect spinocerebellar pathways as well as local intersegmental spinal circuits using genetic tools in both male and female mice. We find that Clarke's column neurons, a major contributor to the direct spinocerebellar pathway, has mossy fiber terminals that diversify extensively in the cerebellar cortex with axons terminating bilaterally, but with no significant axon collaterals within the spinal cord, medulla, or cerebellar nuclei. By contrast, we find that two of the indirect pathways, the spino-lateral reticular nucleus and spino-olivary pathways, are in part, derived from cervical Atoh1-lineage neurons, whereas thoracolumbar Atoh1-lineage neurons project mostly locally within the spinal cord. Notably, while cervical and thoracolumbar Atoh1-lineage neurons connect locally with motor neurons, no Clarke's column to motor neuron connections were detected. Together, we define anatomic differences between long-range direct, indirect, and local proprioceptive subcircuits that likely mediate different components of proprioceptive-motor behaviors.SIGNIFICANCE STATEMENT We define the anatomy of long-range direct and indirect spinocerebellar pathways as well as local spinal proprioceptive circuits. We observe that mossy fiber axon terminals of Clarke's column neurons diversify proprioceptive information across granule cells in multiple lobules on both ipsilateral and contralateral sides, sending no significant collaterals within the spinal cord, medulla, or cerebellar nuclei. Strikingly, we find that cervical spinal cord Atoh1-lineage neurons form mainly the indirect spino-lateral reticular nucleus and spino-olivary tracts and thoracolumbar Atoh1-lineage neurons project locally within the spinal cord, whereas only a few Atoh1-lineage neurons form a direct spinocerebellar tract.


Assuntos
Cerebelo/fisiologia , Rede Nervosa/fisiologia , Propriocepção/fisiologia , Medula Espinal/fisiologia , Tratos Espinocerebelares/fisiologia , Animais , Animais Recém-Nascidos , Cerebelo/química , Cerebelo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/química , Rede Nervosa/citologia , Medula Espinal/química , Medula Espinal/citologia , Tratos Espinocerebelares/química , Tratos Espinocerebelares/citologia
2.
Nat Commun ; 15(1): 339, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184690

RESUMO

Prune belly syndrome (PBS), also known as Eagle-Barret syndrome, is a rare, multi-system congenital myopathy primarily affecting males. Phenotypically, PBS cases manifest three cardinal pathological features: urinary tract dilation with poorly contractile smooth muscle, wrinkled flaccid ventral abdominal wall with skeletal muscle deficiency, and intra-abdominal undescended testes. Genetically, PBS is poorly understood. After performing whole exome sequencing in PBS patients, we identify one compound heterozygous variant in the PIEZO1 gene. PIEZO1 is a cation-selective channel activated by various mechanical forces and widely expressed throughout the lower urinary tract. Here we conduct an extensive functional analysis of the PIEZO1 PBS variants that reveal loss-of-function characteristics in the pressure-induced normalized open probability (NPo) of the channel, while no change is observed in single-channel currents. Furthermore, Yoda1, a PIEZO1 activator, can rescue the NPo defect of the PBS mutant channels. Thus, PIEZO1 mutations may be causal for PBS and the in vitro cellular pathophysiological phenotype could be rescued by the small molecule, Yoda1. Activation of PIEZO1 might provide a promising means of treating PBS and other related bladder dysfunctional states.


Assuntos
Síndrome do Abdome em Ameixa Seca , Masculino , Humanos , Síndrome do Abdome em Ameixa Seca/genética , Mutação , Contração Muscular/genética , Músculo Esquelético , Músculo Liso , Canais Iônicos/genética
3.
eNeuro ; 8(1)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33468540

RESUMO

Motor neurons (MNs) innervating the digit muscles of the intrinsic hand (IH) and intrinsic foot (IF) control fine motor movements. The ability to reproducibly label specifically IH and IF MNs in mice would be a beneficial tool for studies focused on fine motor control. To this end, we find that a CRE knock-in mouse line of Atoh1, a developmentally expressed basic helix-loop-helix (bHLH) transcription factor, reliably expresses CRE-dependent reporter genes in ∼60% of the IH and IF MNs. We determine that CRE-dependent expression in IH and IF MNs is ectopic because an Atoh1 mouse line driving FLPo recombinase does not label these MNs although other Atoh1-lineage neurons in the intermediate spinal cord are reliably identified. Furthermore, the CRE-dependent reporter expression is enriched in the IH and IF MN pools with much sparser labeling of other limb-innervating MN pools such as the tibialis anterior (TA), gastrocnemius (GS), quadricep (Q), and adductor (Ad). Lastly, we find that ectopic reporter expression begins postnatally and labels a mixture of α and γ-MNs. Altogether, the Atoh1 CRE knock-in mouse strain might be a useful tool to explore the function and connectivity of MNs involved in fine motor control when combined with other genetic or viral strategies that can restrict labeling specifically to the IH and IF MNs. Accordingly, we provide an example of sparse labeling of IH and IF MNs using an intersectional genetic approach.


Assuntos
Neurônios Motores , Medula Espinal , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos , Músculo Esquelético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA