Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 11(19): 7996-8001, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32910660

RESUMO

For ligand-protected gold clusters, geometrical differences of gold cores and/or the presence of secondary gold core-ligand interactions influence their unique optical and electronic properties and can, in principle, be detected by spectral changes of gold core vibrations (phonon modes) in ultralow-frequency Raman spectroscopy. We report experimental and theoretical Raman spectra of Au8 clusters protected by phosphine ligands particularly in the "gold cluster fingerprint" region from 50 to 150 cm-1 Raman shift (1.5 to 4.5 terahertz, THz). A characteristic core breathing mode observed at ca. 123 cm-1 was sensitive to differences of core geometries. A new band was found at ca. 150 cm-1, originating from a local strain on a polyhedral gold core caused by weak Au···π interactions. THz Raman spectroscopy can be utilized for metal nanoclusters to visualize core structural changes and Au···π interactions, which cannot be captured by single crystal X-ray analysis.

2.
ACS Omega ; 3(8): 9052-9059, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459039

RESUMO

Pt-based nanostructured electrocatalysts supported on carbon black have been widely studied for the oxygen reduction reaction (ORR), which occurs at the cathode in polymer electrolyte fuel cells. Because sluggish ORR kinetics are known to govern the cell performance, there is a need to develop highly active and durable electrocatalysts. The ORR activity of Pt-based electrocatalysts can be improved by controlling their morphology and alloying Pt with transition metals such as Ni. Improving the catalyst durability remains challenging and there is a lack of catalyst design concepts and synthetic strategies. We report the enhancement of the ORR activity and durability of a nanostructured Pt-Ni electrocatalyst by strong metal/support interactions with a nitrogen-doped carbon (NC) support. Pt-Ni rhombic dodecahedral nanoframes (NFs) were immobilized on the NC support and showed higher ORR electrocatalytic activity and durability in acidic media than that supported on a nondoped carbon black. Durability tests demonstrated that NF/NC showed almost no activity loss even after 50 000 potential cycles under catalytic conditions, and the Ni dissolution from the NFs was suppressed at the NC support, as confirmed by energy dispersive X-ray spectroscopy analysis. Physicochemical measurements including surface-enhanced infrared absorption spectroscopy of surface-adsorbed CO revealed that the strong metal/support interactions of the NF with the NC support caused the downshift of the d-band center position of the surface Pt. Our findings demonstrate that tuning the electronic structure of nanostructured Pt alloy electrocatalysts via the strong metal/support interactions with heteroatom-doped carbon supports will allow the development of highly active and robust electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA