Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Biotechnol Bioeng ; 121(4): 1284-1297, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240126

RESUMO

Product association of host-cell proteins (HCPs) to monoclonal antibodies (mAbs) is widely regarded as a mechanism that can enable HCP persistence through multiple purification steps and even into the final drug substance. Discussion of this mechanism often implies that the existence or extent of persistence is directly related to the strength of binding but actual measurements of the binding affinity of such interactions remain sparse. Two separate avenues of investigation of HCP-mAb binding are reported here. One is the measurement of the affinity of binding of individual, commonly persistent Chinese hamster ovary (CHO) HCPs to each of a set of mAbs, and the other uses quantitative proteomic measurements to assess binding of HCPs in a null CHO harvested cell culture fluid (HCCF) to mAbs produced in the same cell line. The individual HCP measurements show that the binding affinities of individual HCPs to different mAbs can vary appreciably but are rarely very high, with only weak pH dependence. The measurements on the null HCCF allow estimation of individual HCP-mAb affinities; these are typically weaker than those seen in affinity measurements on isolated HCPs. Instead, the extent of binding appears correlated with the initial abundance of individual HCPs in the HCCF and the forms of the HCPs in the solution, i.e., whether HCPs are present as free molecules or as parts of large aggregates. Separate protein A chromatography experiments performed by feeding different fractions of a mAb-containing HCCF obtained by size-exclusion chromatography (SEC) showed clear differences in the number and identity of HCPs found in the protein A eluate. These results indicate a significant role for HCP-mAb association in determining HCP persistence through protein A chromatography, presumably through binding of HCP-mAb complexes to the resin. Overall, the results illustrate the importance of considering more fully the biophysical context of HCP-product association in assessing the factors that may affect the phenomenon and determine its implications. Knowledge of the abundances and the forms of individual or aggregated HCPs in HCCF are particularly significant, emphasizing the integration of upstream and downstream bioprocessing and the importance of understanding the collective properties of HCPs in addition to just the biophysical properties of individual HCPs.


Assuntos
Anticorpos Monoclonais , Proteômica , Cricetinae , Animais , Cricetulus , Proteômica/métodos , Células CHO , Anticorpos Monoclonais/química , Cromatografia em Gel , Proteína Estafilocócica A/química
2.
Biotechnol Bioeng ; 121(1): 291-305, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37877536

RESUMO

Host-cell proteins (HCPs) are the foremost class of process-related impurities to be controlled and removed in downstream processing steps in monoclonal antibody (mAb) manufacturing. However, some HCPs may evade clearance in multiple purification steps and reach the final drug product, potentially threatening drug stability and patient safety. This study extends prior work on HCP characterization and persistence in mAb process streams by using mass spectrometry (MS)-based methods to track HCPs through downstream processing steps for seven mAbs that were generated by five different cell lines. The results show considerable variability in HCP identities in the processing steps but extensive commonality in the identities and quantities of the most abundant HCPs in the harvests for different processes. Analysis of HCP abundance in the harvests shows a likely relationship between abundance and the reproducibility of quantification measurements and suggests that some groups of HCPs may hinder the characterization. Quantitative monitoring of HCPs persisting through purification steps coupled with the findings from the harvest analysis suggest that multiple factors, including HCP abundance and mAb-HCP interactions, can contribute to the persistence of individual HCPs and the identification of groups of common, persistent HCPs in mAb manufacturing.


Assuntos
Anticorpos Monoclonais , Cricetinae , Animais , Humanos , Anticorpos Monoclonais/química , Reprodutibilidade dos Testes , Cricetulus , Espectrometria de Massas , Células CHO
3.
Biotechnol Bioeng ; 120(4): 1068-1080, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36585356

RESUMO

In the production of biopharmaceuticals such as monoclonal antibodies (mAbs) and vaccines, the residual amounts of host-cell proteins (HCPs) are among the critical quality attributes. In addition to overall HCP levels, individual HCPs may elude purification, potentially causing issues in product stability or patient safety. Such HCP persistence has been attributed mainly to biophysical interactions between individual HCPs and the product, resin media, or residual chromatin particles. Based on measurements on process streams from seven mAb processes, we have found that HCPs in aggregates, not necessarily chromatin-derived, may play a significant role in the persistence of many HCPs. Such aggregates may also hinder accurate detection of HCPs using existing proteomics methods. The findings also highlight that certain HCPs may be difficult to remove because of their functional complementarity to the product; specifically, chaperones and other proteins involved in the unfolded protein response (UPR) are disproportionately present in the aggregates. The methods and findings described here expand our understanding of the origins and potential behavior of HCPs in cell-based biopharmaceutical processes and may be instrumental in improving existing techniques for HCP detection and clearance.


Assuntos
Produtos Biológicos , Agregados Proteicos , Cricetinae , Animais , Humanos , Cricetulus , Anticorpos Monoclonais , Proteômica/métodos , Células CHO
4.
Sensors (Basel) ; 20(13)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32646055

RESUMO

Recent studies have addressed the various benefits of companion robots and expanded the research scope to their design. However, the viewpoints of older adults have not been deeply investigated. Therefore, this study aimed to examine the distinctive viewpoints of older adults by comparing them with those of younger adults. Thirty-one older and thirty-one younger adults participated in an eye-tracking experiment to investigate their impressions of a bear-like robot mockup. They also completed interviews and surveys to help us understand their viewpoints on the robot design. The gaze behaviors and the impressions of the two groups were significantly different. Older adults focused significantly more on the robot's face and paid little attention to the rest of the body. In contrast, the younger adults gazed at more body parts and viewed the robot in more detail than the older adults. Furthermore, the older adults rated physical attractiveness and social likeability of the robot significantly higher than the younger adults. The specific gaze behavior of the younger adults was linked to considerable negative feedback on the robot design. Based on these empirical findings, we recommend that impressions of older adults be considered when designing companion robots.


Assuntos
Atitude , Robótica , Idoso , Face , Feminino , Humanos , Masculino , Inquéritos e Questionários
5.
Microb Cell Fact ; 15: 95, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27260327

RESUMO

BACKGROUND: Lignocellulosic raw materials have extensively been examined for the production of bio-based fuels, chemicals, and polymers using microbial platforms. Since xylose is one of the major components of the hydrolyzed lignocelluloses, it is being considered a promising substrate in lignocelluloses based fermentation process. Ralstonia eutropha, one of the most powerful and natural producers of polyhydroxyalkanoates (PHAs), has extensively been examined for the production of bio-based chemicals, fuels, and polymers. However, to the best of our knowledge, lignocellulosic feedstock has not been employed for R. eutropha probably due to its narrow spectrum of substrate utilization. Thus, R. eutropha engineered to utilize xylose should be useful in the development of microbial process for bio-based products from lignocellulosic feedstock. RESULTS: Recombinant R. eutropha NCIMB11599 expressing the E. coli xylAB genes encoding xylose isomerase and xylulokinase respectively, was constructed and examined for the synthesis of poly(3-hydroxybutyrate) [P(3HB)] using xylose as a sole carbon source. It could produce 2.31 g/L of P(3HB) with a P(3HB) content of 30.95 wt% when it was cultured in a nitrogen limited chemically defined medium containing 20.18 g/L of xylose in a batch fermentation. Also, recombinant R. eutropha NCIMB11599 expressing the E. coli xylAB genes produced 5.71 g/L of P(3HB) with a P(3HB) content of 78.11 wt% from a mixture of 10.05 g/L of glucose and 10.91 g/L of xylose in the same culture condition. The P(3HB) concentration and content could be increased to 8.79 g/L and 88.69 wt%, respectively, when it was cultured in the medium containing 16.74 g/L of glucose and 6.15 g/L of xylose. Further examination of recombinant R. eutropha NCIMB11599 expressing the E. coli xylAB genes by fed-batch fermentation resulted in the production of 33.70 g/L of P(3HB) in 108 h with a P(3HB) content of 79.02 wt%. The concentration of xylose could be maintained as high as 6 g/L, which is similar to the initial concentration of xylose during the fed-batch fermentation suggesting that xylose consumption is not inhibited during fermentation. Finally, recombinant R. eutorpha NCIMB11599 expressing the E. coli xylAB gene was examined for the production of P(3HB) from the hydrolysate solution of sunflower stalk. The hydrolysate solution of sunflower stalk was prepared as a model lignocellulosic biomass, which contains 78.8 g/L of glucose, 26.9 g/L of xylose, and small amount of 4.8 g/L of galactose and mannose. When recombinant R. eutropha NCIMB11599 expressing the E. coli xylAB genes was cultured in a nitrogen limited chemically defined medium containing 23.1 g/L of hydrolysate solution of sunflower stalk, which corresponds to 16.8 g/L of glucose and 5.9 g/L of xylose, it completely consumed glucose and xylose in the sunflower stalk based medium resulting in the production of 7.86 g/L of P(3HB) with a P(3HB) content of 72.53 wt%. CONCLUSIONS: Ralstonia eutropha was successfully engineered to utilize xylose as a sole carbon source as well as to co-utilize it in the presence of glucose for the synthesis of P(3HB). In addition, R. eutropha engineered to utilized xylose could synthesize P(3HB) from the sunflower stalk hydrolysate solution containing glucose and xylose as major sugars, which suggests that xylose utilizing R. eutropha developed in this study should be useful for development of lignocellulose based microbial processes.


Assuntos
Cupriavidus necator/metabolismo , Helianthus/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Xilose/metabolismo , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Cupriavidus necator/genética , Cupriavidus necator/crescimento & desenvolvimento , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidroxibutiratos/análise , Hidroxibutiratos/química , Engenharia Metabólica , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Poliésteres/análise , Poliésteres/química
6.
Microb Cell Fact ; 15(1): 174, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27717386

RESUMO

BACKGROUND: 5-Aminovaleric acid (5AVA) is an important five-carbon platform chemical that can be used for the synthesis of polymers and other chemicals of industrial interest. Enzymatic conversion of L-lysine to 5AVA has been achieved by employing lysine 2-monooxygenase encoded by the davB gene and 5-aminovaleramidase encoded by the davA gene. Additionally, a recombinant Escherichia coli strain expressing the davB and davA genes has been developed for bioconversion of L-lysine to 5AVA. To use glucose and xylose derived from lignocellulosic biomass as substrates, rather than L-lysine as a substrate, we previously examined direct fermentative production of 5AVA from glucose by metabolically engineered E. coli strains. However, the yield and productivity of 5AVA achieved by recombinant E. coli strains remain very low. Thus, Corynebacterium glutamicum, a highly efficient L-lysine producing microorganism, should be useful in the development of direct fermentative production of 5AVA using L-lysine as a precursor for 5AVA. Here, we report the development of metabolically engineered C. glutamicum strains for enhanced fermentative production of 5AVA from glucose. RESULTS: Various expression vectors containing different promoters and origins of replication were examined for optimal expression of Pseudomonas putida davB and davA genes encoding lysine 2-monooxygenase and delta-aminovaleramidase, respectively. Among them, expression of the C. glutamicum codon-optimized davA gene fused with His6-Tag at its N-Terminal and the davB gene as an operon under a strong synthetic H36 promoter (plasmid p36davAB3) in C. glutamicum enabled the most efficient production of 5AVA. Flask culture and fed-batch culture of this strain produced 6.9 and 19.7 g/L (together with 11.9 g/L glutaric acid as major byproduct) of 5AVA, respectively. Homology modeling suggested that endogenous gamma-aminobutyrate aminotransferase encoded by the gabT gene might be responsible for the conversion of 5AVA to glutaric acid in recombinant C. glutamicum. Fed-batch culture of a C. glutamicum gabT mutant-harboring p36davAB3 produced 33.1 g/L 5AVA with much reduced (2.0 g/L) production of glutaric acid. CONCLUSIONS: Corynebacterium glutamicum was successfully engineered to produce 5AVA from glucose by optimizing the expression of two key enzymes, lysine 2-monooxygenase and delta-aminovaleramidase. In addition, production of glutaric acid, a major byproduct, was significantly reduced by employing C. glutamicum gabT mutant as a host strain. The metabolically engineered C. glutamicum strains developed in this study should be useful for enhanced fermentative production of the novel C5 platform chemical 5AVA from renewable resources.


Assuntos
Aminoácidos Neutros/biossíntese , Corynebacterium glutamicum/metabolismo , Fermentação , Glucose/metabolismo , Engenharia Metabólica/métodos , Amidoidrolases/genética , Técnicas de Cultura Celular por Lotes , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/genética , Escherichia coli/genética , Glutaratos/metabolismo , Lisina/metabolismo , Oxigenases de Função Mista/genética , Pseudomonas putida/enzimologia , Pseudomonas putida/genética
7.
Bioprocess Biosyst Eng ; 39(4): 555-63, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26780375

RESUMO

Gene-expression cassettes for the construction of recombinant Clostridium beijerinckii were developed as potential tools for metabolic engineering of C. beijerinckii. Gene expression cassettes containing ColE1 origin and pAMB origin along with the erythromycin resistance gene were constructed, in which promoters from Escherichia coli, Lactococcus lactis, Ralstonia eutropha, C. acetobutylicum, and C. beijerinckii are examined as potential promoters in C. beijerinckii. Zymogram analysis of the cell extracts and comparison of lipase activities of the recombinant C. beijerinckii strains expressing Pseudomonas fluorescens tliA gene suggested that the tliA gene was functionally expressed by all the examined promoters with different expression level. Also, recombinant C. beijerinckii expressing C. beijerinckii secondary alcohol dehydrogenase by the constructed expression cassettes successfully produced 2-propanol from glucose. The best promoter for TliA expression was the R. eutropha phaP promoter while that for 2-propanol production was the putative C. beijerinckii pta promoter. Gene expression cassettes developed in this study may be useful tools for the construction of recombinant C. beijerinckii strains as host strains for the valuable chemicals and fuels from renewable resources.


Assuntos
Clostridium beijerinckii/genética , Expressão Gênica , Plasmídeos/genética , Clostridium beijerinckii/metabolismo , Plasmídeos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
8.
Biotechnol Bioeng ; 112(3): 638-43, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25258020

RESUMO

A sucrose utilization pathway was established in Ralstonia eutropha NCIMB11599 and R. eutropha 437-540 by introducing the Mannheimia succiniciproducens MBEL55E sacC gene that encodes ß-fructofuranosidase. These engineered strains were examined for the production of poly(3-hydroxybutyrate) [P(3HB)] and poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)], respectively, from sucrose as a carbon source. It was found that ß-fructofuranosidase excreted into the culture medium could hydrolyze sucrose to glucose and fructose, which were efficiently used as carbon sources by recombinant R. eutropha strains. When R. eutropha NCIMB11599 expressing the sacC gene was cultured in nitrogen-free chemically defined medium containing 20 g/L of sucrose, a high P(3HB) content of 73.2 wt% could be obtained. In addition, R. eutropha 437-540 expressing the Pseudomonas sp. MBEL 6-19 phaC1437 gene and the Clostridium propionicum pct540 gene accumulated P(3HB-co-21.5 mol% LA) to a polymer content of 19.5 wt% from sucrose by the expression of the sacC gene and the Escherichia coli ldhA gene. The molecular weights of P(3HB) and P(3HB-co-21.5 mol%LA) synthesized in R. eutropha using sucrose as a carbon source were 3.52 × 10(5) (Mn ) and 2.19 × 10(4) (Mn ), respectively. The engineered R. eutropha strains reported here will be useful for the production of polyhydroxyalkanoates (PHAs) from sucrose, one of the most abundant and relatively inexpensive carbon sources.


Assuntos
Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Engenharia Metabólica/métodos , Poli-Hidroxialcanoatos/metabolismo , Sacarose/metabolismo , Técnicas de Cultura Celular por Lotes , Poli-Hidroxialcanoatos/análise
9.
J Ind Microbiol Biotechnol ; 42(11): 1481-91, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26364199

RESUMO

A whole-cell biocatalytic system for the production of cadaverine from L-lysine has been developed. Among the investigated lysine decarboxylases from different microorganisms, Escherichia coli LdcC showed the best performance on cadaverine synthesis when E. coli XL1-Blue was used as the host strain. Six different strains of E. coli expressing E. coli LdcC were investigated and recombinant E. coli XL1-Blue, BL21(DE3) and W were chosen for further investigation since they showed higher conversion yield of lysine into cadaverine. The effects of substrate pH, substrate concentrations, buffering conditions, and biocatalyst concentrations have been investigated. Finally, recombinant E. coli XL1-Blue concentrated to an OD(600) of 50, converted 192.6 g/L (1317 mM) of crude lysine solution, obtained from an actual lysine manufacturing process, to 133.7 g/L (1308 mM) of cadaverine with a molar yield of 99.90 %. The whole-cell biocatalytic system described herein is expected to be applicable to the development of industrial bionylon production process.


Assuntos
Biocatálise , Cadaverina/metabolismo , Escherichia coli/metabolismo , Lisina/metabolismo , Soluções Tampão , Carboxiliases/genética , Carboxiliases/metabolismo , Escherichia coli/citologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio
10.
Appl Microbiol Biotechnol ; 98(1): 95-104, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24113828

RESUMO

The Escherichia coli XL1-blue strain was metabolically engineered to synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] through 2-ketobutyrate, which is generated via citramalate pathway, as a precursor for propionyl-CoA. Two different metabolic pathways were examined for the synthesis of propionyl-CoA from 2-ketobutyrate. The first pathway is composed of the Dickeya dadantii 3937 2-ketobutyrate oxidase or the E. coli pyruvate oxidase mutant (PoxB L253F V380A) for the conversion of 2-ketobutyrate into propionate and the Ralstonia eutropha propionyl-CoA synthetase (PrpE) or the E. coli acetyl-CoA:acetoacetyl-CoA transferase for further conversion of propionate into propionyl-CoA. The second pathway employs pyruvate formate lyase encoded by the E. coli tdcE gene or the Clostridium difficile pflB gene for the direct conversion of 2-ketobutyrate into propionyl-CoA. As the direct conversion of 2-ketobutyrate into propionyl-CoA could not support the efficient production of P(3HB-co-3HV) from glucose, the first metabolic pathway was further examined. When the recombinant E. coli XL1-blue strain equipped with citramalate pathway expressing the E. coli poxB L253F V380A gene and R. eutropha prpE gene together with the R. eutropha PHA biosynthesis genes was cultured in a chemically defined medium containing 20 g/L of glucose as a sole carbon source, P(3HB-co-2.3 mol% 3HV) was produced up to the polymer content of 61.7 wt.%. Moreover, the 3HV monomer fraction in P(3HB-co-3HV) could be increased up to 5.5 mol% by additional deletion of the prpC and scpC genes, which are responsible for the metabolism of propionyl-CoA in host strains.


Assuntos
Escherichia coli/enzimologia , Escherichia coli/metabolismo , Glucose/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Poliésteres/metabolismo , Clostridioides difficile/enzimologia , Clostridioides difficile/genética , Cupriavidus necator/enzimologia , Cupriavidus necator/genética , Escherichia coli/genética
11.
Biotechnol Lett ; 36(10): 2037-42, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24930103

RESUMO

Heterologous ABC protein exporters, the apparatus of type I secretion pathway in Gram-negative bacteria, were used for extracellular production of Pseudomonas fluorescens lipase (TliA) in recombinant Escherichia coli. The effect of the expression of different ABC protein exporter gene clusters (P. fluorescens tliDEF, Pseudomonas aeruginosa aprDEF, Erwinia chrysanthemi prtDEF, and Serratia marcescens lipBCD genes) was examined on the secretion of TliA at growth temperatures of 20, 25, 30 and 35 °C. TliA secretion in recombinant E. coli XL10-Gold varied depending upon type of ABC protein exporter and culture temperature. E. coli expressing S. marcescens lipBCD genes showed the highest secretion level of TliA (122.8 U ml(-1)) when cultured at 25 °C. Thus, optimized culture conditions for efficient extracellular production of lipase in recombinant E. coli can be designed by changing the type of ABC protein exporter and the growth temperature.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Lipase/metabolismo , Pseudomonas fluorescens/enzimologia , Clonagem Molecular , Escherichia coli/enzimologia , Escherichia coli/genética , Lipase/genética , Pseudomonas fluorescens/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Via Secretória , Temperatura
12.
Metab Eng ; 16: 42-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23246520

RESUMO

5-Aminovalerate (5AVA) is the precursor of valerolactam, a potential building block for producing nylon 5, and is a C5 platform chemical for synthesizing 5-hydroxyvalerate, glutarate, and 1,5-pentanediol. Escherichia coli was metabolically engineered for the production of 5-aminovalerate (5AVA) and glutarate. When the recombinant E. coli WL3110 strain expressing the Pseudomonas putidadavAB genes encoding delta-aminovaleramidase and lysine 2-monooxygenase, respectively, were cultured in a medium containing 20g/L of glucose and 10g/L of L-lysine, 3.6g/L of 5AVA was produced by converting 7g/L of L-lysine. When the davAB genes were introduced into recombinant E. coli strainXQ56allowing enhanced L-lysine synthesis, 0.27 and 0.5g/L of 5AVA were produced directly from glucose by batch and fed-batch cultures, respectively. Further conversion of 5AVA into glutarate could be demonstrated by expression of the P. putida gabTD genes encoding 5AVA aminotransferase and glutarate semialdehyde dehydrogenase. When recombinant E. coli WL3110 strain expressing the davAB and gabTD genes was cultured in a medium containing 20g/L glucose, 10g/L L-lysine and 10g/L α-ketoglutarate, 1.7g/L of glutarate was produced.


Assuntos
Aminoácidos Neutros/biossíntese , Escherichia coli/metabolismo , Glutaratos/metabolismo , Engenharia Metabólica/métodos , Amidoidrolases/biossíntese , Amidoidrolases/genética , Aminoácidos Neutros/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Escherichia coli/genética , Expressão Gênica , Oxigenases de Função Mista/biossíntese , Oxigenases de Função Mista/genética , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
13.
Metab Eng ; 20: 20-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23973656

RESUMO

Polyhydroxyalkanoates (PHAs) are bio-based and biodegradable polyesters synthesized by numerous microorganisms. PHAs containing 2-hydroxyacids as monomer units have attracted much attention, but their production has not been efficient. Here, we metabolically engineered Ralstonia eutropha strains for the in vivo synthesis of PHAs containing 2-hydroxyacids as monomers. This was accomplished by replacing the R. eutropha phaC gene in the chromosome with either the R. eutropha phaC S506G A510K gene, which contains two point mutations, or the Pseudomonas sp. MBEL 6-19 phaC1437 gene. In addition, the R. eutropha phaAB genes in the chromosome were replaced with the Clostridium propionicum pct540 gene. All of the engineered R. eutropha strains produced PHAs containing 2-hydroxyacid monomers, including lactate and 2-hydroxybutyrate (2HB), along with 3-hydroxybutyrate (3HB) and/or 3-hydroxyvalerate (3HV), when they were cultured in nitrogen-free medium containing 5 g/L lactate or 4 g/L 2HB and 20 g/L glucose as carbon sources. Expression of the Escherichia coli ldhA gene in engineered R. eutropha strains allowed production of poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)] from glucose as the sole carbon source. This is the first report on the production of 2-hydroxyacid-containing PHAs by metabolically engineered R. eutropha.


Assuntos
Proteínas de Bactérias , Cupriavidus necator , Engenharia Metabólica , Poli-Hidroxialcanoatos , Pseudomonas , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/genética , Pseudomonas/genética , Pseudomonas/metabolismo
14.
Biotechnol Lett ; 35(10): 1631-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23743954

RESUMO

We have previously analyzed the proteome of recombinant Escherichia coli producing poly(3-hydroxybutyrate) [P(3HB)] and revealed that the expression level of several enzymes in central metabolism are proportional to the amount of P(3HB) accumulated in the cells. Based on these results, the amplification effects of triosephosphate isomerase (TpiA) and fructose-bisphosphate aldolase (FbaA) on P(3HB) synthesis were examined in recombinant E. coli W3110, XL1-Blue, and W lacI mutant strains using glucose, sucrose and xylose as carbon sources. Amplification of TpiA and FbaA significantly increased the P(3HB) contents and concentrations in the three E. coli strains. TpiA amplification in E. coli XL1-Blue lacI increased P(3HB) from 0.4 to 1.6 to g/l from glucose. Thus amplification of glycolytic pathway enzymes is a good strategy for efficient production of P(3HB) by allowing increased glycolytic pathway flux to make more acetyl-CoA available for P(3HB) biosynthesis.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Hidroxibutiratos/metabolismo , Engenharia Metabólica , Poliésteres/metabolismo , Proteoma/análise , Escherichia coli/química , Proteínas de Escherichia coli/análise , Expressão Gênica , Redes e Vias Metabólicas/genética
15.
Biotechnol Lett ; 35(10): 1677-83, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23881313

RESUMO

Microbial-surface display is the expression of proteins or peptides on the surface of cells by fusing an appropriate protein as an anchoring motif. Here, the outer membrane protein W (OmpW) was selected as a fusion partner for functional expression of Pseudomonas fluorescence SIK W1 lipase (TliA) on the cell-surface of Escherichia coli. Localization of the truncated OmpW-TliA fusion protein on the cell-surface was confirmed by immunoblotting and functional assay of lipase activity. Enantioselective hydrolysis of rac-phenylethyl butanoate by the displayed lipase resulted in optically active (R)-phenyl ethanol with 96% enantiomeric excess and 44% of conversion in 5 days. Thus, a small outer membrane protein OmpW, is a useful anchoring motif for displaying an active enzyme of ~50 kDa on the cell-surface and the surface-displayed lipase can be employed as an enantioselective biocatalyst in organic synthesis.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Técnicas de Visualização da Superfície Celular/métodos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Expressão Gênica , Lipase/biossíntese , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Butiratos/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Immunoblotting , Lipase/química , Lipase/genética , Peso Molecular , Álcool Feniletílico/metabolismo , Pseudomonas/enzimologia , Pseudomonas/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
16.
Bioprocess Biosyst Eng ; 36(7): 885-92, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23010721

RESUMO

In this study, we developed recombinant Escherichia coli strains expressing Lactococcus lactis subsp. lactis Il1403 glutamate decarboxylase (GadB) for the production of GABA from glutamate monosodium salt (MSG). Syntheses of GABA from MSG were examined by employing recombinant E. coli XL1-Blue as a whole cell biocatalyst in buffer solution. By increasing the concentration of E. coli XL1-Blue expressing GadB from the OD600 of 2-10, the concentration and conversion yield of GABA produced from 10 g/L of MSG could be increased from 4.3 to 4.8 g/L and from 70 to 78 %, respectively. Furthermore, E. coli XL1-Blue expressing GadB highly concentrated to the OD600 of 100 produced 76.2 g/L of GABA from 200 g/L of MSG with 62.4 % of GABA yield. Finally, nylon 4 could be synthesized by the bulk polymerization using 2-pyrrolidone that was prepared from microbially synthesized GABA by the reaction with Al2O3 as catalyst in toluene with the yield of 96 %.


Assuntos
Escherichia coli/metabolismo , Nylons/metabolismo , Recombinação Genética , Ácido gama-Aminobutírico/metabolismo , Sequência de Bases , Primers do DNA , Escherichia coli/genética , Glutamato Descarboxilase/metabolismo
17.
J Chromatogr A ; 1696: 463962, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37043977

RESUMO

Protein A chromatography is a workhorse in monoclonal antibody (mAb) manufacture since it provides effective separation of mAbs from impurities such as host-cell proteins (HCPs) in a single capture step. HCP clearance can be aided by the inclusion of a wash step prior to low-pH elution. Although high-pH washes can be effective in removing additional HCPs from the loaded column, they may also contribute to a reduced mAb yield. In this work we show that this yield loss is reflected in a pH-dependent variation of the equilibrium binding capacity of the protein A resin, which is also observed for the capacity of the Fc fragments alone and therefore not a result of steric interactions involving the Fab fragments in the intact mAbs. We therefore hypothesized that the high-pH wash loss was due to protonation or deprotonation of ionizable residues on the protein A ligand. To evaluate this, we applied a rational protein engineering approach to the Z domain (the Fc-binding component of most commercial protein A ligands) and expressed engineered mutants in E. coli. Biolayer interferometry and affinity chromatography experiments showed that some of the Z domain mutants were able to mitigate wash loss at high pH while maintaining similar binding characteristics at neutral pH. These experiments enabled elucidation of the roles of specific interactions in the Z domain - Fc complex, but more importantly offer a route to ameliorating the disadvantages of high-pH washes in protein A chromatography.


Assuntos
Escherichia coli , Proteína Estafilocócica A , Cricetinae , Animais , Proteína Estafilocócica A/química , Ligantes , Escherichia coli/metabolismo , Cricetulus , Células CHO , Anticorpos Monoclonais/química , Cromatografia de Afinidade/métodos , Concentração de Íons de Hidrogênio
18.
Artigo em Inglês | MEDLINE | ID: mdl-32375330

RESUMO

Recent technological advances introduced conversational agents into homes. Many researchers have investigated how people utilize and perceive them. However, only a small number of studies have focused on how older adults interact with these agents. This study presents a 14-day user study of 19 participants who experienced a conversational agent in a real-life environment. We grouped them into two groups by age and compared their experiences. From a log study and semi-structured interviews, we identified several differences between the two groups. Compared to younger adults, older adults used the agent more. They used it primarily for listening to music and reported satisfaction with it. Younger adults mainly used utility skills like weather report checks and setting of alarms, which streamlined their daily lives. Moreover, older adults tended to view the agent as a companion, while younger adults saw it as a tool. Based on these empirical findings, we suggest that conversational agents should be designed with consideration of the different usage patterns and perceptions across age groups.


Assuntos
Comunicação , Música , Interface Usuário-Computador , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
Polymers (Basel) ; 11(7)2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31337154

RESUMO

Cadaverine is a C5 diamine monomer used for the production of bio-based polyamide 510. Cadaverine is produced by the decarboxylation of l-lysine using a lysine decarboxylase (LDC). In this study, we developed recombinant Escherichia coli strains for the expression of LDC from Hafnia alvei. The resulting recombinant XBHaLDC strain was used as a whole cell biocatalyst for the high-level bioconversion of l-lysine into cadaverine without the supplementation of isopropyl ß-d-1-thiogalactopyranoside (IPTG) for the induction of protein expression and pyridoxal phosphate (PLP), a key cofactor for an LDC reaction. The comparison of results from enzyme characterization of E. coli and H. alvei LDC revealed that H. alvei LDC exhibited greater bioconversion ability than E. coli LDC due to higher levels of protein expression in all cellular fractions and a higher specific activity at 37 °C (1825 U/mg protein > 1003 U/mg protein). The recombinant XBHaLDC and XBEcLDC strains were constructed for the high-level production of cadaverine. Recombinant XBHaLDC produced a 1.3-fold higher titer of cadaverine (6.1 g/L) than the XBEcLDC strain (4.8 g/L) from 10 g/L of l-lysine. Furthermore, XBHaLDC, concentrated to an optical density (OD600) of 50, efficiently produced 136 g/L of cadaverine from 200 g/L of l-lysine (97% molar yield) via an IPTG- and PLP-free whole cell bioconversion reaction. Cadaverine synthesized via a whole cell biocatalyst reaction using XBHaLDC was purified to polymer grade, and purified cadaverine was successfully used for the synthesis of polyamide 510. In conclusion, an IPTG- and PLP-free whole cell bioconversion process of l-lysine into cadaverine, using recombinant XBHaLDC, was successfully utilized for the production of bio-based polyamide 510, which has physical and thermal properties similar to polyamide 510 synthesized from chemical-grade cadaverine.

20.
Biotechnol J ; 12(11)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28862377

RESUMO

The authors previously reported the production of polyhydroxyalkanoates (PHAs) containing 2-hydroxyacid monomers by expressing evolved Pseudomonas sp. 6-19 PHA synthase and Clostridium propionicum propionyl-CoA transferase in engineered microorganisms. Here, the authors examined four butyryl-CoA transferases from Roseburia sp., Eubacterium hallii, Faecalibacterium prausnitzii, and Anaerostipes caccae as potential CoA-transferases to support synthesis of polymers having 2HA monomer. In vitro activity analyses of the four butyryl-CoA transferases suggested that each butyryl-CoA transferase has different activities towards 2-hydroxybutyrate (2HB), 3-hydroxybutyrate (3HB), and lactate (LA). When Escherichia coli XL1-Blue expressing Pseudomonas sp. 6-19 PhaC1437 along with one butyryl-CoA transferase is cultured in chemically defined MR medium containing 20 g L-1 of glucose, 2 g L-1 of sodium 3-hydroxybutyrate, and various concentrations of sodium 2-hydroxybutyrate, PHAs consisting of 3HB, 2HB, and LA are produced. The monomer composition of PHAs agreed well with the substrate specificities of butyryl-CoA transferases from E. hallii, F. prausnitzii, and A. caccae, but not Roseburia sp. When E. coli XL1-Blue expressing PhaC1437 and E. hallii butyryl-CoA transferase is cultured in MR medium containing 20 g L-1 of glucose and 2 g L-1 of sodium 2-hydroxybutyrate, P(65.7 mol% 2HB-co-34.3 mol% LA) is produced with the highest PHA content of 30 wt%. Butyryl-CoA transferases also supported the production of P(3HB-co-2HB-co-LA) from glucose as the sole carbon source in E. coli XL1-Blue strains when one of these bct genes is expressed with phaC1437, cimA3.7, leuBCD, panE, and phaAB genes. Butyryl-CoA transferases characterized in this study can be used for engineering of microorganisms that produce PHAs containing novel 2-hydroxyacid monomers.


Assuntos
Acil Coenzima A/metabolismo , Escherichia coli/genética , Hidroxiácidos/metabolismo , Engenharia Metabólica/métodos , Poli-Hidroxialcanoatos/metabolismo , Acil Coenzima A/genética , Técnicas de Cultura Celular por Lotes , Escherichia coli/metabolismo , Fermentação , Hidroxiácidos/química , Poli-Hidroxialcanoatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA