Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 19(36): 11904-15, 2013 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-23922181

RESUMO

The tri-tert-butylphenalenyl (TBPLY) radical exists as a π dimer in the crystal form with perfect overlapping of the singly occupied molecular orbitals (SOMOs) causing strong antiferromagnetic exchange interactions. 2,5-Di-tert-butyl-6-oxophenalenoxyl (6OPO) is a phenalenyl-based air-stable neutral π radical with extensive spin delocalization and is a counter analogue of phenalenyl in terms of the topological symmetry of the spin density distribution. X-ray crystal structure analyses showed that 8-tert-butyl- and 8-(p-XC6H4)-6OPOs (X=I, Br) also form π dimers in the crystalline state. The π-dimeric structure of 8-tert-butyl-6OPO is seemingly similar to that of TBPLY even though its SOMO-SOMO overlap is small compared with that of TBPLY. The 8-(p-XC6H4) derivatives form slipped stacking π dimers in which the SOMO-SOMO overlaps are greater than in 8-tert-butyl-6OPO, but still smaller than in TBPLY. The solid-state electronic spectra of the 6OPO derivatives show much weaker intradimer charge-transfer bands, and SQUID measurements for 8-(p-BrC6H4)-6OPO show a weak antiferromagnetic exchange interaction in the π dimer. These results demonstrate that the control of the spin distribution patterns of the phenalenyl skeleton switches the mode of exchange interaction within the phenalenyl-based π dimer. The formation of the relevant multicenter-two-electron bonds is discussed.

2.
Genetics ; 161(3): 1187-96, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12136021

RESUMO

We examined the pattern of synonymous substitutions in the duplicated Amylase (Amy) genes (called the Amy1- and Amy3-type genes, respectively) in the Drosophila montium species subgroup. The GC content at the third synonymous codon sites of the Amy1-type genes was higher than that of the Amy3-type genes, while the GC content in the 5'-flanking region was the same in both genes. This suggests that the difference in the GC content at third synonymous sites between the duplicated genes is not due to the temporal or regional changes in mutation bias. We inferred the direction of synonymous substitutions along branches of a phylogeny. In most lineages, there were more synonymous substitutions from G/C (G or C) to A/T (A or T) than from A/T to G/C. However, in one lineage leading to the Amy1-type genes, which is immediately after gene duplication but before speciation of the montium species, synonymous substitutions from A/T to G/C were predominant. According to a simple model of synonymous DNA evolution in which major codons are selectively advantageous within each codon family, we estimated the selection intensity for specific lineages in a phylogeny on the basis of inferred patterns of synonymous substitutions. Our result suggested that the difference in GC content at synonymous sites between the two Amy-type genes was due to the change of selection intensity immediately after gene duplication but before speciation of the montium species.


Assuntos
Amilases/genética , Códon/genética , Drosophila/classificação , Drosophila/genética , Duplicação Gênica , Animais , Composição de Bases , Genes Duplicados , Biblioteca Genômica , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA