Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Org Chem ; 75(23): 8003-11, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21033762

RESUMO

Despite the importance of regioselective reductive openings of cyclic acetals, mechanistic details are scarce. In this study 4,6-O-benzylidene acetals were used as model compounds for deciphering the mechanism of regioselective openings using a variety of reducing agents. Competitive isotopic studies aiming at primary and secondary isotope effects, as well as an electron-deficient substrate, were used to evaluate stereo- and regioselectivity. We show that there are three distinctly different mechanistic pathways. In nonpolar solvents, such as toluene, the acetal is activated by the very reactive naked Lewis acid to give a fully developed oxocarbenium ion that is then reduced by the borane, with low stereoselectivity. In THF the reactivity of the Lewis acid is moderated by complex formation with the solvent. These reactions are thus much slower and proceed through an intimate ion pair and thereby show high stereoselectivities. The regioselectivity in these reactions is directed by the interaction between the Lewis acid and the most nucleophilic oxygen of the acetal, thus yielding a free 6-hydroxyl group. Finally, boranes such as BH(3)·NMe(3) are activated by Lewis acid, which results in the borane being the most electrophilic species, and consequently the reaction shows inversed regioselectivity to give a free 4-hydroxyl group. These reactions proceed through an oxocarbenium ion and thus show low stereoselectivity.

2.
Carbohydr Res ; 346(12): 1358-70, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21531396

RESUMO

The use of benzylidene acetals as protecting groups in carbohydrate chemistry is utterly important. The main advantage of benzylidene acetal is the ability for regioselective openings. 4,6-benzylidene acetal can be opened selectively under reductive conditions to yield either free 4-OH or 6-OH. There are a plethora of methods available for regioselective openings, but only a few of these are widely used. In recent years, the mechanism has been investigated for borane mediated openings and it seems likely that the regioselectivity is determined by borane, rather than Lewis acid. When borane is activated by Lewis acids, borane is the most electrophilic species that consequently coordinates to the most nucleophilic oxygen of the acetals, usually O-6. This results in the formation of 6-O-benzyl ethers. If borane is not activated, Lewis acid is the most electrophilic species that thus adds to O-6 and hence generates the 4-O-benzyl ether.


Assuntos
Acetais/síntese química , Compostos de Benzilideno/síntese química , Química Orgânica/métodos , Boranos/química , Configuração de Carboidratos , Ácidos de Lewis/química , Oxirredução , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA