RESUMO
Oat sterile dwarf virus (OSDV) is a fijivirus whose genome segments 7 to 10 were sequenced earlier. In the current study, the complete genome was sequenced. To confirm the genome ends, rapid amplification and sequencing of cDNA ends were performed. The complete OSDV genome consists of 10 double-stranded RNA (dsRNA) segments with a total size of 28,686 bp. The sense strand sequence of all segments has the terminal consensus sequence motif 5'-AACGA(5-7) U(6-8)(A/U)GUC-3', in which the length of the stretches of A and U varies, being slightly shorter for segments 1-4 and longer for segments 5-10. The 3' end of segment 3 is UGUC, not AGUC as in the other segments. Segments 5, 7, and 10 contain two small ORFs, while each of the other segments contains one long ORF. ORF7-2 and ORF9 are slightly longer than annotated before. Phylogenetic analysis based on amino acid sequences of the RNA-directed RNA polymerase (RdRP) placed OSDV between the plant fijiviruses and Nilaparvata lugens reovirus (NLRV), an insect fijivirus that does not replicate in plants. OSDV RdRP shares 48-49% sequence identity with other plant-infecting fijivirus RdRPs and 30% identity with that of NLRV. OSDV has earlier been reported in several Northern and Central European countries. The sequencing of the complete genome serves as a reference for identifying all segments in future high-throughput sequencing datasets, enabling the investigation of the molecular epidemiology and evolution of OSDV.
Assuntos
Reoviridae , Reoviridae/genética , Avena/genética , Genoma Viral , Filogenia , RNA Polimerase Dependente de RNA/genética , RNA Viral/genéticaRESUMO
Regional genetic differentiation within species is often addressed in evolutionary ecology and conservation biology. Here, we address regional differentiation in two closely related hybridizing taxa, the perennial sedges Carex flava and C. viridula and their hybrid C. × subviridula in 37 populations in the north and centre of their distribution range in Europe (Estonia, Lowland (<1000 m a.s.l.) and Highland Switzerland) using 10 putative microsatellite loci. We ask whether regional differentiation was larger in the less common taxon C. viridula or whether, possibly due to hybridization, it was similar between taxa. Our results showed similar, low to moderate genetic diversity for the three studied taxa. In total, we found 12 regional species-specific alleles. Analysis of molecular variance (AMOVA), STRUCTURE and multidimensional scaling analysis showed regional structure in genetic variation, where intraspecific differentiation between regions was lower for C. flava (AMOVA: 6.84 %) than for C. viridula (20.77 %) or C. × subviridula (18.27 %) populations. Hybrids differed from the parental taxa in the two regions where they occurred, i.e. in Estonia and Lowland Switzerland. We conclude that C. flava and C. viridula clearly differ from each other genetically, that there is pronounced regional differentiation and that, despite hybridization, this regional differentiation is more pronounced in the less common taxon, C. viridula. We encourage future studies on hybridizing taxa to work with plant populations from more than one region.
RESUMO
Allozyme variation of ten heterozymes of seven enzymes among five accessions of a rare diploid Bromus fasciculatus was analysed with the use of PAGE and compared with that for six other species of section Genea of the genus Bromus. Allozymes charasteristic for diploids B. tectorum and B. fasciculatus are combined in fixed heterozygous phenotypes of tetraploid B. rubens. Fixed heterozygous phenotypes of tetraploid B. madritensis combine one allozyme of B. fasciculatus with another of diploid B. sterilis at each of the loci studied. Of the three diploids studied, only B. sterilis fits well for a role of a genome donor for the polyploid B. diandrus-rigidus complex. Bromus fasciculatus thus appears to be a diploid ancestor for the two tetraploids of section Genea, B. rubens and B. madritensis.