Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(2): e0124723, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38289097

RESUMO

To elucidate why plasmid-borne catabolic ability differs among host bacteria, we assessed the expression dynamics of the Pant promoter on the carbazole-degradative conjugative plasmid pCAR1 in Pseudomonas putida KT2440(pCAR1) (hereafter, KTPC) and Pseudomonas resinovorans CA10. The Pant promoter regulates the transcription of both the car and ant operons, which are responsible for converting carbazole into anthranilate and anthranilate into catechol, respectively. In the presence of anthranilate, transcription of the Pant promoter is induced by the AraC/XylS family regulator AntR, encoded on pCAR1. A reporter cassette containing the Pant promoter followed by gfp was inserted into the chromosomes of KTPC and CA10. After adding anthranilate, GFP expression in the population of CA10 showed an unimodal distribution, whereas a small population with low GFP fluorescence intensity appeared for KTPC. CA10 has a gene, antRCA, that encodes an iso-functional homolog of AntR on its chromosome. When antRCA was disrupted, a small population with low GFP fluorescence intensity appeared. In contrast, overexpression of pCAR1-encoded AntR in KTPC resulted in unimodal expression under the Pant promoter. These results suggest that the expression of pCAR1-encoded AntR is insufficient to ameliorate the stochastic expression of the Pant promoter. Raman spectra of single cells collected using deuterium-labeled carbazole showed that the C-D Raman signal exhibited greater variability for KTPC than CA10. These results indicate that heterogeneity at the transcriptional level of the Pant promoter due to insufficient AntR availability causes fluctuations in the pCAR1-borne carbazole-degrading capacity of host bacterial cells.IMPORTANCEHorizontally acquired genes increase the competitiveness of host bacteria under selective conditions, although unregulated expression of foreign genes may impose fitness costs. The "appropriate" host for a plasmid is empirically known to maximize the expression of plasmid-borne traits. In the case of pCAR1-harboring Pseudomonas strains, P. resinovorans CA10 exhibits strong carbazole-degrading capacity, whereas P. putida KT2440 harboring pCAR1 exhibits low degradation capacity. Our results suggest that a chromosomally encoded transcription factor affects transcriptional and metabolic fluctuations in host cells, resulting in different carbazole-degrading capacities as a population. This study may provide a clue for determining appropriate hosts for a plasmid and for regulating the expression of plasmid-borne traits, such as the degradation of xenobiotics and antibiotic resistance.


Assuntos
Pseudomonas putida , Plasmídeos/genética , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Regiões Promotoras Genéticas , Carbazóis/metabolismo , ortoaminobenzoatos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Plant J ; 111(5): 1354-1367, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35781905

RESUMO

Momilactone A, an important plant labdane-related diterpenoid, functions as a phytoalexin against pathogens and an allelochemical against neighboring plants. The genes involved in the biosynthesis of momilactone A are found in clusters, i.e., momilactone A biosynthetic gene clusters (MABGCs), in the rice and barnyardgrass genomes. In addition, we know little about the origin and evolution of MABGCs. Here, we integrated results from comprehensive phylogeny and comparative genomic analyses of the core genes of MABGC-like clusters and MABGCs in 40 monocot plant genomes, providing convincing evidence for the birth and evolution of MABGCs in grass species. The MABGCs found in the PACMAD clade of the core grass lineage (including Panicoideae and Chloridoideae) originated from a MABGC-like cluster in Triticeae (BOP clade) via lateral gene transfer (LGT) and followed by recruitment of MAS1/2 and CYP76L1 genes. The MABGCs in Oryzoideae originated from PACMAD through another LGT event and lost CYP76L1 afterwards. The Oryza MABGC and another Oryza diterpenoid cluster c2BGC are two distinct clusters, with the latter originating from gene duplication and relocation within Oryzoideae. Further comparison of the expression patterns of the MABGC genes between rice and barnyardgrass in response to pathogen infection and allelopathy provides novel insights into the functional innovation of MABGCs in plants. Our results demonstrate LGT-mediated origination of MABGCs in grass and shed lights into the evolutionary innovation and optimization of plant biosynthetic pathways.


Assuntos
Diterpenos , Echinochloa , Oryza , Diterpenos/metabolismo , Echinochloa/genética , Echinochloa/metabolismo , Família Multigênica , Oryza/metabolismo , Plantas/metabolismo , Poaceae/genética , Poaceae/metabolismo
3.
Plant Cell Physiol ; 64(4): 405-421, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36472361

RESUMO

Jasmonic acid (JA) regulates plant growth, development and stress responses. Coronatine insensitive 1 (COI1) and jasmonate zinc-finger inflorescence meristem-domain (JAZ) proteins form a receptor complex for jasmonoyl-l-isoleucine, a biologically active form of JA. Three COIs (OsCOI1a, OsCOI1b and OsCOI2) are encoded in the rice genome. In the present study, we generated mutants for each rice COI gene using genome editing to reveal the physiological functions of the three rice COIs. The oscoi2 mutants, but not the oscoi1a and oscoi1b mutants, exhibited severely low fertility, indicating the crucial role of OsCOI2 in rice fertility. Transcriptomic analysis revealed that the transcriptional changes after methyl jasmonate (MeJA) treatment were moderate in the leaves of oscoi2 mutants compared to those in the wild type or oscoi1a and oscoi1b mutants. MeJA-induced chlorophyll degradation and accumulation of antimicrobial secondary metabolites were suppressed in oscoi2 mutants. These results indicate that OsCOI2 plays a central role in JA response in rice leaves. In contrast, the assessment of growth inhibition upon exogenous application of JA to seedlings of each mutant revealed that rice COIs are redundantly involved in shoot growth, whereas OsCOI2 plays a primary role in root growth. In addition, a co-immunoprecipitation assay showed that OsJAZ2 and OsJAZ5 containing divergent Jas motifs physically interacted only with OsCOI2, whereas OsJAZ4 with a canonical Jas motif interacts with all three rice COIs. The present study demonstrated the functional diversity of rice COIs, thereby providing clues to the mechanisms regulating the various physiological functions of JA.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Oryza/genética , Oryza/metabolismo , Edição de Genes , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Development ; 147(24)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33158927

RESUMO

Pharyngeal arches (PAs) are segmented by endodermal outpocketings called pharyngeal pouches (PPs). Anterior and posterior PAs appear to be generated by different mechanisms, but it is unclear how the anterior and posterior PAs combine. Here, we addressed this issue with precise live imaging of PP development and cell tracing of pharyngeal endoderm in zebrafish embryos. We found that two endodermal bulges are initially generated in the future second PP (PP2) region, which separates anterior and posterior PAs. Subsequently, epithelial remodeling causes contact between these two bulges, resulting in the formation of mature PP2 with a bilayered morphology. The rostral and caudal bulges develop into the operculum and gill, respectively. Development of the caudal PP2 and more posterior PPs is affected by impaired retinoic acid signaling or pax1a/b dysfunction, suggesting that the rostral front of posterior PA development corresponds to the caudal PP2. Our study clarifies an aspect of PA development that is essential for generation of a seamless array of PAs in zebrafish.


Assuntos
Região Branquial/crescimento & desenvolvimento , Desenvolvimento Embrionário/genética , Endoderma/crescimento & desenvolvimento , Fatores de Transcrição Box Pareados/genética , Proteínas de Peixe-Zebra/genética , Animais , Padronização Corporal/genética , Embrião não Mamífero , Endoderma/metabolismo , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Brânquias/crescimento & desenvolvimento , Mesoderma/crescimento & desenvolvimento , Crista Neural/crescimento & desenvolvimento , Faringe/crescimento & desenvolvimento , Transdução de Sinais/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
5.
Biosci Biotechnol Biochem ; 87(10): 1122-1128, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37403366

RESUMO

(3R, 7S)-jasmonoyl-L-isoleucine (JA-Ile) is a lipid-derived plant hormone that regulates plant responses, including biotic/abiotic stress adaptation. In the plant cells, JA-Ile is perceived by COI1-JAZ co-receptor by causing protein-protein interaction between COI1 and JAZ proteins to trigger gene expressions. In this study, we focused on Oryza sativa, a model monocot and an important crop, with 45 possible OsCOI-OsJAZ co-receptor pairs composed of three OsCOI homologs (OsCOI1a, OsCOI1b, and OsCOI2) and 15 OsJAZ homologs. We performed fluorescein anisotropy and pull-down assays to examine the affinity between JA-Ile and OsCOI1a/1b/2-OsJAZ1-15 co-receptor pairs. The results revealed a remarkable difference in the modes of ligand perception by OsCOI1a/1b and OsCOI2. Recently, the unique function of OsCOI2 in some of the JA-responses were revealed. Our current results will lead to the possible development of OsCOI2-selective synthetic ligand.


Assuntos
Proteínas de Arabidopsis , Oryza , Proteínas de Arabidopsis/genética , Oryza/genética , Oryza/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ligantes , Plantas/metabolismo , Ciclopentanos/metabolismo , Isoleucina/genética , Isoleucina/metabolismo , Oxilipinas/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Biosci Biotechnol Biochem ; 88(1): 63-69, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37791963

RESUMO

MdDOX-Co, the ectopic expression of which is considered to cause the apple columnar tree shape, belongs to the 2-oxoglutarate-dependent dioxygenase (2ODD) family. It adds a hydroxyl group to position 12 of gibberellins (GAs). However, the 2ODD enzymes related to GA biosynthesis and catabolism are phylogenetically distinct from MdDOX-Co. Thus, it is possible that substrates other than GAs exist in MdDOX-Co. To identify the previously unidentified substrate(s) of MdDOX-Co, we searched for MdDOX-Co-specific inhibitors. Chemical screening using gas chromatography-mass spectrometry was performed to investigate the effects of 2400 compounds that inhibited the catalytic reaction of MdDOX-Co, but not the catabolic reaction of GA 2-oxidase, an enzyme involved in GA catabolism. By applying two positive compounds in Arabidopsis, a chemical 3-((2-chloro-6-fluorobenzyl)thio)-5,7-dimethyl-5H-pyrazolo[3,4-e][1,4,2]dithiazine-1,1-dioxide designated as TPDD that did not inhibit GA biosynthesis was selected. The structure-activity relationships among the TPDD analogs were also obtained.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/farmacologia , Giberelinas/metabolismo , Oxigenases de Função Mista/metabolismo
7.
Biosci Biotechnol Biochem ; 88(1): 8-15, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37833097

RESUMO

Gibberellins are diterpenoid phytohormones that regulate plant growth, and are biosynthesized from a diterpene intermediate, ent-kaurene, which is produced from geranylgeranyl diphosphate via ent-copalyl diphosphate (ent-CDP). The successive 2 cyclization reactions are catalyzed by 2 distinct diterpene synthases, ent-CDP synthase (ent-CPS) and ent-kaurene synthase (KS). Various diterpene synthase genes involved in specialized metabolism were likely created through duplication and neofunctionalization of gibberellin-biosynthetic ent-CPS and KS genes in crops. Brachypodium distachyon is a monocotyledonous species that is a model plant in grasses. We herein found 1 ent-CPS gene homolog BdCPS and 4 tandemly arrayed KS-like genes BdKS1, KSL2, KSL3, and KSL4 in the B. distachyon genome, a simpler collection of paralogs than in crops. Phylogenetic and biochemical analyses showed that BdCPS and BdKS1 are responsible for gibberellin biosynthesis. BdKSL2 and BdKSL3 are suggested to be involved in specialized diterpenoid metabolism. Moreover, we restored KS activity of BdKSL2 through amino acid substitution.


Assuntos
Alquil e Aril Transferases , Brachypodium , Diterpenos , Giberelinas , Grão Comestível/metabolismo , Brachypodium/genética , Brachypodium/metabolismo , Filogenia , Alquil e Aril Transferases/genética , Diterpenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(22): 12472-12480, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32409606

RESUMO

Momilactones are bioactive diterpenoids that contribute to plant defense against pathogens and allelopathic interactions between plants. Both cultivated and wild grass species of Oryza and Echinochloa crus-galli (barnyard grass) produce momilactones using a biosynthetic gene cluster (BGC) in their genomes. The bryophyte Calohypnum plumiforme (formerly Hypnum plumaeforme) also produces momilactones, and the bifunctional diterpene cyclase gene CpDTC1/HpDTC1, which is responsible for the production of the diterpene framework, has been characterized. To understand the molecular architecture of the momilactone biosynthetic genes in the moss genome and their evolutionary relationships with other momilactone-producing plants, we sequenced and annotated the C. plumiforme genome. The data revealed a 150-kb genomic region that contains two cytochrome P450 genes, the CpDTC1/HpDTC1 gene and the "dehydrogenase momilactone A synthase" gene tandemly arranged and inductively transcribed following stress exposure. The predicted enzymatic functions in yeast and recombinant assay and the successful pathway reconstitution in Nicotiana benthamiana suggest that it is a functional BGC responsible for momilactone production. Furthermore, in a survey of genomic sequences of a broad range of plant species, we found that momilactone BGC is limited to the two grasses (Oryza and Echinochloa) and C. plumiforme, with no synteny among these genomes. These results indicate that while the gene cluster in C. plumiforme is functionally similar to that in rice and barnyard grass, it is likely a product of convergent evolution. To the best of our knowledge, this report of a BGC for a specialized plant defense metabolite in bryophytes is unique.


Assuntos
Evolução Molecular , Genoma de Planta , Lactonas/metabolismo , Plantas/metabolismo , Vias Biossintéticas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/classificação , Plantas/genética
9.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373546

RESUMO

Crops experience herbivory by arthropods and microbial infections. In the interaction between plants and chewing herbivores, lepidopteran larval oral secretions (OS) and plant-derived damage-associated molecular patterns (DAMPs) trigger plant defense responses. However, the mechanisms underlying anti-herbivore defense, especially in monocots, have not been elucidated. The receptor-like cytoplasmic kinase Broad-Spectrum Resistance 1 (BSR1) of Oryza sativa L. (rice) mediates cytoplasmic defense signaling in response to microbial pathogens and enhances disease resistance when overexpressed. Here, we investigated whether BSR1 contributes to anti-herbivore defense responses. BSR1 knockout suppressed rice responses triggered by OS from the chewing herbivore Mythimna loreyi Duponchel (Lepidoptera: Noctuidae) and peptidic DAMPs OsPeps, including the activation of genes required for biosynthesis of diterpenoid phytoalexins (DPs). BSR1-overexpressing rice plants exhibited hyperactivation of DP accumulation and ethylene signaling after treatment with simulated herbivory and acquired enhanced resistance to larval feeding. As the biological significance of herbivory-induced accumulation of rice DPs remains unexplained, their physiological activities in M. loreyi were analyzed. The addition of momilactone B, a rice DP, to the artificial diet suppressed the growth of M. loreyi larvae. Altogether, this study revealed that BSR1 and herbivory-induced rice DPs are involved in the defense against chewing insects, in addition to pathogens.


Assuntos
Mariposas , Oryza , Animais , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Herbivoria/fisiologia , Transdução de Sinais , Mariposas/fisiologia , Plantas/metabolismo , Larva/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Plant Mol Biol ; 109(4-5): 595-609, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34822009

RESUMO

KEY MESSAGE: We show that in rice, the amino acid-conjugates of JA precursor, OPDA, may function as a non-canonical signal for the production of phytoalexins in coordination with the innate chitin signaling. The core oxylipins, jasmonic acid (JA) and JA-Ile, are well-known as potent regulators of plant defense against necrotrophic pathogens and/or herbivores. However, recent studies also suggest that other oxylipins, including 12-oxo-phytodienoic acid (OPDA), may contribute to plant defense. Here, we used a previously characterized metabolic defense marker, p-coumaroylputrescine (CoP), and fungal elicitor, chitooligosaccharide, to specifically test defense role of various oxylipins in rice (Oryza sativa). While fungal elicitor triggered a rapid production of JA, JA-Ile, and their precursor OPDA, rice cells exogenously treated with the compounds revealed that OPDA, rather than JA-Ile, can stimulate the CoP production. Next, reverse genetic approach and oxylipin-deficient rice mutant (hebiba) were used to uncouple oxylipins from other elicitor-triggered signals. It appeared that, without oxylipins, residual elicitor signaling had only a minimal effect but, in synergy with OPDA, exerted a strong stimulatory activity towards CoP production. Furthermore, as CoP levels were compromised in the OPDA-treated Osjar1 mutant cells impaired in the oxylipin-amino acid conjugation, putative OPDA-amino acid conjugates emerged as hypothetical regulators of CoP biosynthesis. Accordingly, we found several OPDA-amino acid conjugates in rice cells treated with exogenous OPDA, and OPDA-Asp was detected, although in small amounts, in the chitooligosaccharide-treated rice. However, as synthetic OPDA-Asp and OPDA-Ile, so far, failed to induce CoP in cells, it suggests that yet another presumed OPDA-amino acid form(s) could be acting as novel regulator(s) of phytoalexins in rice.


Assuntos
Oryza , Oxilipinas , Aminoácidos/metabolismo , Quitina/metabolismo , Quitosana , Ciclopentanos/metabolismo , Oligossacarídeos , Oryza/genética , Oxilipinas/metabolismo , Sesquiterpenos , Fitoalexinas
11.
Plant Mol Biol ; 109(4-5): 651-666, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34476681

RESUMO

KEY MESSAGE: This study describes biological functions of the bHLH transcription factor RERJ1 involved in the jasmonate response and the related defense-associated metabolic pathways in rice, with particular focus on deciphering the regulatory mechanisms underlying stress-induced volatile emission and herbivory resistance. RERJ1 is rapidly and drastically induced by wounding and jasmonate treatment but its biological function remains unknown as yet. Here we provide evidence of the biological function of RERJ1 in plant defense, specifically in response to herbivory and pathogen attack, and offer insights into the RERJ1-mediated regulation of metabolic pathways of specialized defense compounds, such as monoterpene linalool, in possible collaboration with OsMYC2-a well-known master regulator in jasmonate signaling. In rice (Oryza sativa L.), the basic helix-loop-helix (bHLH) family transcription factor RERJ1 is induced under environmental stresses, such as wounding and drought, which are closely linked to jasmonate (JA) accumulation. Here, we investigated the biological function of RERJ1 in response to biotic stresses, such as herbivory and pathogen infection, using an RERJ1-defective mutant. Transcriptome analysis of the rerj1-Tos17 mutant revealed that RERJ1 regulated the expression of a typical family of conserved JA-responsive genes (e.g., terpene synthases, proteinase inhibitors, and jasmonate ZIM domain proteins). Upon exposure to armyworm attack, the rerj1-Tos17 mutant exhibited more severe damage than the wildtype, and significant weight gain of the larvae fed on the mutant was observed. Upon Xanthomonas oryzae infection, the rerj1-Tos17 mutant developed more severe symptoms than the wildtype. Among RERJ1-regulated terpene synthases, linalool synthase expression was markedly disrupted and linalool emission after wounding was significantly decreased in the rerj1-Tos17 mutant. RERJ1 appears to interact with OsMYC2-a master regulator of JA signaling-and many OsJAZ proteins, although no obvious epistatic interaction was detected between them at the transcriptional level. These results indicate that RERJ1 is involved in the transcriptional induction of JA-mediated stress-responsive genes via physical association with OsMYC2 and mediates defense against herbivory and bacterial infection through JA signaling.


Assuntos
Oryza , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Herbivoria , Oryza/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
12.
BMC Plant Biol ; 22(1): 402, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35974304

RESUMO

BACKGROUND: Plants growing in proximity to other plants are exposed to a variety of metabolites that these neighbors release into the environment. Some species produce allelochemicals to inhibit growth of neighboring plants, which in turn have evolved ways to detoxify these compounds. RESULTS: In order to understand how the allelochemical-receiving target plants respond to chemically diverse compounds, we performed whole-genome transcriptome analysis of Arabidopsis thaliana exposed to either the benzoxazinoid derivative 2-amino- 3H-phenoxazin-3-one (APO) or momilactone B. These two allelochemicals belong to two very different compound classes, benzoxazinoids and diterpenes, respectively, produced by different Poaceae crop species. CONCLUSIONS: Despite their distinct chemical nature, we observed similar molecular responses of A. thaliana to these allelochemicals. In particular, many of the same or closely related genes belonging to the three-phase detoxification pathway were upregulated in both treatments. Further, we observed an overlap between genes upregulated by allelochemicals and those involved in herbicide detoxification. Our findings highlight the overlap in the transcriptional response of a target plant to natural and synthetic phytotoxic compounds and illustrate how herbicide resistance could arise via pathways involved in plant-plant interaction.


Assuntos
Arabidopsis , Diterpenos , Arabidopsis/genética , Arabidopsis/metabolismo , Benzoxazinas/metabolismo , Benzoxazinas/farmacologia , Diterpenos/metabolismo , Diterpenos/farmacologia , Feromônios/análise , Feromônios/metabolismo , Plantas/metabolismo
13.
Appl Environ Microbiol ; 88(15): e0083522, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35862661

RESUMO

Cumene dioxygenase (CumDO) is an initial enzyme in the cumene degradation pathway of Pseudomonas fluorescens IP01 and is a Rieske non-heme iron oxygenase (RO) that comprises two electron transfer components (reductase [CumDO-R] and Rieske-type ferredoxin [CumDO-F]) and one catalytic component (α3ß3-type oxygenase [CumDO-O]). Catalysis is triggered by electrons that are transferred from NAD(P)H to CumDO-O by CumDO-R and CumDO-F. To investigate the binding mode between CumDO-F and CumDO-O and to identify the key CumDO-O amino acid residues for binding, we simulated docking between the CumDO-O crystal structure and predicted model of CumDO-F and identified two potential binding sites: one is at the side-wise site and the other is at the top-wise site in mushroom-like CumDO-O. Then, we performed alanine mutagenesis of 16 surface amino acid residues at two potential binding sites. The results of reduction efficiency analyses using the purified components indicated that CumDO-F bound at the side-wise site of CumDO-O, and K117 of the α-subunit and R65 of the ß-subunit were critical for the interaction. Moreover, these two positively charged residues are well conserved in α3ß3-type oxygenase components of ROs whose electron donors are Rieske-type ferredoxins. Given that these residues were not conserved if the electron donors were different types of ferredoxins or reductases, the side-wise site of the mushroom-like structure is thought to be the common binding site between Rieske-type ferredoxin and α3ß3-type oxygenase components in ROs. IMPORTANCE We clarified the critical amino acid residues of the oxygenase component (Oxy) of Rieske non-heme iron oxygenase (RO) for binding with Rieske-type ferredoxin (Fd). Our results showed that Rieske-type Fd-binding site is commonly located at the stem (side-wise site) of the mushroom-like α3ß3 quaternary structure in many ROs. The resultant binding site was totally different from those reported at the top-wise site of the doughnut-like α3-type Oxy, although α3-type Oxys correspond to the cap (α3 subunit part) of the mushroom-like α3ß3-type Oxys. Critical amino acid residues detected in this study were not conserved if the electron donors of Oxys were different types of Fds or reductases. Altogether, we can suggest that unique binding modes between Oxys and electron donors have evolved, depending on the nature of the electron donors, despite Oxy molecules having shared α3ß3 quaternary structures.


Assuntos
Ferredoxinas , Oxigenases , Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Ferredoxinas/metabolismo , Ferro/metabolismo , NAD/metabolismo , Oxigenases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
14.
Biol Lett ; 18(5): 20210629, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35506238

RESUMO

One of the characteristic aspects of odour sensing in humans is the activation of olfactory receptors in a slightly different manner in response to different enantiomers. Here, we focused on whether plants showed enantiomer-specific response similar to that in humans. We exposed Arabidopsis seedlings to methanol (control) and (+)- or (-)-borneol, and found that only (+)-borneol reduced the root length. Furthermore, the root-tip width was more increased upon (+)-borneol exposure than upon (-)-borneol exposure. In addition, root-hair formation was observed near the root tip in response to (+)-borneol. Auxin signalling was strongly reduced in the root tip following exposure to (+)-borneol, but was detected following exposure to (-)-borneol and methanol. Similarly, in the root tip, the activity of cyclin B1:1 was detected on exposure to (-)-borneol and methanol, but not on exposure to (+)-borneol, indicating that (+)-borneol inhibits the meristematic activity in the root. These results partially explain the (+)-borneol-specific reduction in the root length of Arabidopsis. Our results indicate the presence of a sensing system specific for (+)-borneol in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Canfanos , Humanos , Ácidos Indolacéticos/farmacologia , Meristema/fisiologia , Metanol , Raízes de Plantas/fisiologia
15.
Heart Vessels ; 37(4): 583-592, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34655317

RESUMO

PURPOSE: We recently reported a noninvasive method for the assessment of right ventricular (RV) operating stiffness that is obtained by dividing the atrial-systolic descent of the pulmonary artery-RV pressure gradient (PRPGDAC) derived from the pulmonary regurgitant velocity by the tricuspid annular plane movement during atrial contraction (TAPMAC). Here, we investigated whether this parameter of RV operating stiffness, PRPGDAC/TAPMAC, is useful for predicting the prognosis of patients with heart failure (HF). METHODS: We retrospectively included 127 hospitalized patients with HF who underwent an echocardiographic examination immediately pre-discharge. The PRPGDAC/TAPMAC was measured in addition to standard echocardiographic parameters. Patients were followed until 2 years post-discharge. The endpoint was the composite of cardiac death, readmission for acute decompensation, and increased diuretic dose due to worsening HF. RESULTS: 58 patients (46%) experienced the endpoint during follow-up. Univariable and multivariable Cox regression analyses demonstrated that the PRPGDAC/TAPMAC was associated with the endpoint. In a Kaplan-Meier analysis, the event rate of the greater PRPGDAC/TAPMAC group was significantly higher than that of the lesser PRPGDAC/TAPMAC group. In a sequential Cox analysis for predicting the endpoint's occurrence, the addition of PRPGDAC/TAPMAC to the model including age, sex, NYHA functional classification, brain natriuretic peptide level, and several echocardiographic parameters including tricuspid annular plane systolic excursion significantly improved the predictive power for prognosis. CONCLUSION: A completely noninvasive index of RV operating stiffness, PRPGDAC/TAPMAC, was useful for predicting prognoses in patients with HF, and it showed an incremental prognostic value over RV systolic function.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Direita , Assistência ao Convalescente , Ecocardiografia , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/etiologia , Humanos , Alta do Paciente , Prognóstico , Estudos Retrospectivos , Disfunção Ventricular Direita/diagnóstico por imagem , Disfunção Ventricular Direita/etiologia , Função Ventricular Direita
16.
Heart Vessels ; 37(4): 638-646, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34562142

RESUMO

Although the echocardiographic effective orifice area (EOA) calculated using the continuity equation is widely used for the assessment of severity in aortic stenosis (AS), the existence of high flow velocity at the left ventricular outflow tract (LVOT) potentially causes its overestimation. The proximal isovelocity surface area (PISA) method could be an alternative tool for the estimation of EOA that limits the influence of upstream flow velocity. EOA was calculated using the continuity equation (EOACont) and PISA method (EOAPISA), respectively, in 114 patients with at least moderate AS. The geometric orifice area (GOA) was also measured using the planimetry method in 51 patients who also underwent three-dimensional transesophageal echocardiography. Patients were divided into two groups according to the median LVOT flow velocity. EOAPISA could be obtained in 108 of the 114 patients (95%). Although there was a strong correlation between EOACont and EOAPISA (r = 0.78, P < 0.001), EOACont was statistically significantly larger than EOAPISA (0.86 ± 0.33 vs 0.75 ± 0.29 cm2, P < 0.001). Both EOACont and EOAPISA similarly correlated with GOA (r = 0.70, P < 0.001 and r = 0.77, P < 0.001, respectively). However, a fixed bias, which is hydrodynamically supposed to exist between EOA and GOA, was not observed between EOACont and GOA. In contrast, there was a negative fixed bias between EOAPISA and GOA with smaller EOAPISA than GOA. The difference between EOACont and GOA was significantly greater with a larger EOACont relative to GOA in patients with high LVOT flow velocity than in those without (0.16 ± 0.25 vs - 0.07 ± 0.10 cm2, P < 0.001). In contrast, the difference between EOAPISA and GOA was consistent regardless of the LVOT flow velocity (- 0.07 ± 0.12 vs - 0.07 ± 0.15 cm2, P = 0.936). The PISA method was applied to estimate EOA in patients with AS. EOAPISA could be an alternative parameter for AS severity grading in patients with high LVOT flow velocity in whom EOACont would potentially overestimate the orifice area.


Assuntos
Estenose da Valva Aórtica , Ecocardiografia Tridimensional , Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/diagnóstico por imagem , Ecocardiografia Tridimensional/métodos , Ecocardiografia Transesofagiana , Humanos
17.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33741620

RESUMO

A novel gene cluster involved in the degradation of lignin-derived monoaromatics such as p-hydroxybenzoate, vanillate, and ferulate has been identified in the thermophilic nitrate reducer Thermus oshimai JL-2. Based on conserved domain analyses and metabolic pathway mapping, the cluster was classified into upper- and peripheral-pathway operons. The upper-pathway genes, responsible for the degradation of p-hydroxybenzoate and vanillate, are located on a 0.27-Mb plasmid, whereas the peripheral-pathway genes, responsible for the transformation of ferulate, are spread throughout the plasmid and the chromosome. In addition, a lower-pathway operon was also identified in the plasmid that corresponds to the meta-cleavage pathway of catechol. Spectrophotometric and gene induction data suggest that the upper and lower operons are induced by p-hydroxybenzoate, which the strain can degrade completely within 4 days of incubation, whereas the peripheral genes are expressed constitutively. The upper degradation pathway follows a less common route, proceeding via the decarboxylation of protocatechuate to form catechol, and involves a novel thermostable γ-carboxymuconolactone decarboxylase homolog, identified as protocatechuate decarboxylase based on gene deletion experiments. This gene cluster is conserved in only a few members of the Thermales and shows traces of vertical expansion of catabolic pathways in these organisms toward lignoaromatics.IMPORTANCE High-temperature steam treatment of lignocellulosic biomass during the extraction of cellulose and hemicellulose fractions leads to the release of a wide array of lignin-derived aromatics into the natural ecosystem, some of which can have detrimental effects on the environment. Not only will identifying organisms capable of using such aromatics aid in environmental cleanup, but thermostable enzymes, if characterized, can also be used for efficient lignin valorization. However, no thermophilic lignin degraders have been reported thus far. The present study reports T. oshimai JL-2 as a thermophilic bacterium with the potential to use lignin-derived aromatics. The identification of a novel thermostable protocatechuate decarboxylase gene in the strain further adds to its significance, as such an enzyme can be efficiently used in the biosynthesis of cis,cis-muconate, an important intermediate in the commercial production of plastics.


Assuntos
Ácidos Cumáricos/metabolismo , Lignina/metabolismo , Parabenos/metabolismo , Thermus/metabolismo , Ácido Vanílico/metabolismo , Genes Bacterianos , Família Multigênica , Thermus/genética
18.
Biosci Biotechnol Biochem ; 85(9): 1945-1952, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34244709

RESUMO

Various diterpene synthases have been functionally identified in cultivated rice (Oryza sativa). These are the homologs of ent-copalyl diphosphate (ent-CDP) synthase and ent-kaurene synthase (KS) that are responsible for the biosynthesis of gibberellins, diterpenoid phytohormones. We isolated a cDNA encoding full-length OsKSL12, a previously uncharacterized KS like (KSL) enzyme that consists of a ß-domain and an α-domain with an active center, but lacks an N-terminal γ-domain. Functional analysis using a bacterial expression system showed that recombinant OsKSL12 converted ent-CDP into ent-manool or ent-13-epi-manool. Comparative genomics revealed that functional OsKSL12 homologs exist in diverse wild species in the Oryzeae-Oryza nivara (Oryza rufipogon), Oryza coarctata, Oryza granulata, Leersia perrieri, and Leersia tisseranti. KSL12 homologs in O. granulata, L. perrieri, and L. tisseranti preferentially reacted with geranylgeranyl diphosphate rather than ent-CDP, resulting in geranyllinalool rather than ent-manool or ent-13-epi-manool as the main product, meaning that KSL12 functionally diversified during evolution in the Oryzeae.


Assuntos
Alquil e Aril Transferases/análise , Diterpenos/química , Oryza/enzimologia , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Evolução Molecular , Genoma de Planta , Oryza/genética , Filogenia , Domínios Proteicos
19.
Tohoku J Exp Med ; 254(3): 199-206, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34305101

RESUMO

Differentiating neutrophils based on the count of nuclear lobulation is useful for diagnosing various hematological disorders, including megaloblastic anemia, myelodysplastic syndrome, and sepsis. It has been reported that one-fifth of sepsis-infected patients worldwide died between 1990 and 2017. Notably, fewer nuclear-lobed and stab-formed neutrophils develop in the peripheral blood during sepsis. This abnormality can serve as an early diagnostic criterion. However, testing this feature is a complex and time-consuming task that is rife with human error. For this reason, we apply deep learning to automatically differentiate neutrophil and nuclear lobulation counts and report the world's first small-scale pilot. Blood films are prepared using venous peripheral blood taken from four healthy volunteers and are stained with May-Grünwald Giemsa stain. Six-hundred 360 × 363-pixel images of neutrophils having five different nuclear lobulations are automatically captured by Cellavision DM-96, an automatic digital microscope camera. Images are input to an original architecture with five convolutional layers built on a deep learning neural-network platform by Sony, Neural Network Console. The deep learning system distinguishes the four groups (i.e., band-formed, two-, three-, and four- and five- segmented) of neutrophils with up to 99% accuracy, suggesting that neutrophils can be automatically differentiated based on their count of segmented nuclei using deep learning.


Assuntos
Aprendizado Profundo , Sepse , Humanos , Redes Neurais de Computação , Neutrófilos
20.
J Clin Ultrasound ; 49(4): 358-367, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33098167

RESUMO

PURPOSE: To investigate the influence of changes in vortices within the left ventricle (LV) on energy efficiency (EE) in normal and diseased hearts. METHODS: We performed vector flow mapping echocardiography in 36 normal participants (N), 36 patients with dilated cardiomyopathy (D), and 36 patients with LV hypertrophy (H). The circulation of the main anterior vortex was measured as a parameter of vortex strength. Energy loss (EL) was measured for one cardiac cycle, and EE was calculated as EL divided by stroke work (SW), which represents the loss of kinetic energy per unit of LV external work. RESULTS: Circulation increased in the order of N, H, and D (N: 15 ± 4, D: 19 ± 8, H: 17 ± 6 × 10-3 m2 /s; analysis of variance [ANOVA] P < .01). Conversely, EE increased in the order of N, D, and H (N: 0.22 ± 0.07, D: 0.26 ± 0.16, H: 0.30 ± 0.16 10-5 J/mm Hg mL m s; ANOVA P = .04), suggesting worst EE in group H. We found a positive correlation between circulation and SW only in group N, and positive correlation between circulation and EE only in diseased groups (D: R = 0.55, P < .01; H: R = 0.44, P < .01). Multivariable analyses revealed that circulation was the independent determinant of EE in groups D and H. CONCLUSIONS: Enhanced vortices could be associated with effective increase in LV external work in normal hearts. Conversely, they were associated with loss of EE without an optimal increase in external work in failing hearts, regardless of the LV morphology.


Assuntos
Cardiomiopatia Dilatada/fisiopatologia , Coração/fisiologia , Coração/fisiopatologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Idoso , Cardiomiopatia Dilatada/diagnóstico por imagem , Ecocardiografia/métodos , Feminino , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Humanos , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Função Ventricular , Função Ventricular Esquerda/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA