Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Reprod Dev ; 69(4): 218-222, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37271516

RESUMO

Secretion of pulsatile gonadotropin-releasing hormone (GnRH) is essential for reproduction. Kisspeptin neurons in the arcuate nucleus (ARC), which coexpress neurokinin B (NKB) and its receptor (NK3R), are believed to be components of the GnRH pulse generator that regulates pulsatile GnRH secretion. We examined the effects of peripheral infusion of senktide, an NK3R selective agonist, on GnRH pulse generator activity by monitoring multiple unit activity (MUA) in the goat ARC. Previous studies have shown that characteristic increases in MUA (MUA volleys) reflect GnRH pulse generator activity. Senktide was infused intravenously or intravaginally for 2 h while recording MUA. Both infusions significantly increased the MUA volley frequency compared with the control. These results demonstrate that peripherally administered senktide acts centrally to sustainably accelerate the neural activity of the GnRH pulse generator throughout the infusion period. This suggests the possibility of practical applications of NK3R agonists for improving reproductive activity in farm animals.


Assuntos
Hormônio Liberador de Gonadotropina , Receptores da Neurocinina-3 , Animais , Receptores da Neurocinina-3/agonistas , Hormônio Luteinizante , Cabras , Hormônios Esteroides Gonadais , Neurocinina B , Kisspeptinas/farmacologia
2.
J Reprod Dev ; 67(6): 352-358, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34629331

RESUMO

Kisspeptin neurons in the arcuate nucleus (ARC), which co-express neurokinin B (NKB) and dynorphin A, are termed KNDy neurons. These neurons are candidates for the intrinsic gonadotropin-releasing hormone (GnRH) pulse generator. The central and peripheral administration of NKB or its receptor (NK3R) agonist evokes GnRH pulse generator activity and the subsequent pulsatile GnRH/luteinizing hormone (LH) secretion. However, the mechanism responsible for neural activation of the GnRH pulse generator in goats is unclear. We conducted electrophysiological and histochemical experiments to test the hypothesis that KNDy neurons receive NKB and that the signal is transmitted bilaterally to a population of KNDy neurons. Bilateral electrodes aimed at a cluster of KNDy neurons were inserted into the ovariectomized goat ARC. We observed the GnRH pulse generator activity, represented by characteristic increases in multiple-unit activity (MUA volleys). The unilateral administration of NKB or vehicle in the close vicinity of KNDy neurons under simultaneous MUA recording from both sides revealed that only NKB evoked MUA volley(s) immediately after administration. The timing of the MUA volley(s) evoked on the ipsilateral side was synchronized to that on the contralateral side. The double-labeled ISH for KISS1 and TACR3, which encode kisspeptin and NK3R, respectively, revealed that most KNDy neurons co-expressed TACR3. Therefore, NKB could directly stimulate KNDy neurons, following which the stimulatory signal is immediately transmitted to the entire population of KNDy neurons via connection with their fibers. This mechanism helps synchronize burst activity among KNDy neurons, thereby generating neural signals that govern pulsatile GnRH secretion.


Assuntos
Núcleo Arqueado do Hipotálamo , Neurocinina B , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Dinorfinas/metabolismo , Cabras , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Neurocinina B/metabolismo
3.
J Nat Prod ; 80(5): 1446-1449, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28421764

RESUMO

A total synthesis of (±)-hyptinin was achieved via a convergent route using the key phosphonate, cyclic ketone, and aryl Grignard components. The 1H and 13C NMR spectra of natural hyptinin did not agree with those of the synthesized compound. In particular, there were considerable differences between the signals assigned to the protons and carbons surrounding the lactone carbonyl group for the natural and synthesized compounds. The NMR data strongly suggested that the naturally occurring compound, hyptinin, was a structural isomer of the synthesized compound. The structure of the natural compound was eventually established as (+)-ß-apopicropodophyllin, based on the synthesis results.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Cetonas/química , Lactonas/síntese química , Podofilina/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Lactonas/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Podofilina/química , Prótons , Estereoisomerismo
4.
J Reprod Dev ; 63(6): 571-580, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29109352

RESUMO

A population of neurons in the arcuate nucleus (ARC) coexpresses kisspeptin, neurokinin B (NKB), and dynorphin, and therefore they are referred to as KNDy neurons. It has been suggested that KNDy neurons participate in several brain functions, including the control of reproduction. The present study aimed to advance our understanding of the anatomy of the KNDy neural system. We first produced an antiserum against goat kisspeptin. After confirming its specificity, the antiserum was used to histochemically detect kisspeptin-positive signals. Using the colocalization of kisspeptin and NKB immunoreactivity as a marker for KNDy neurons, we mapped distributions of their cell somata and fibers in the whole brain (except the cerebellum) of ovariectomized (OVX) goats. KNDy neuronal somata were distributed throughout the ARC, and were particularly abundant in its caudal aspect. KNDy neuronal fibers projected into several areas within the septo-preoptic-hypothalamic continuum, such as the ARC, median eminence, medial preoptic nucleus, and bed nucleus of the stria terminalis. Kisspeptin immunoreactivity was not found outside of the continuum. We then addressed to the hypothesis that substance P (SP) is also involved in the KNDy neural system. Double-labeling immunohistochemistry for kisspeptin and SP revealed that KNDy neurons did not coexpress SP, but nearly all of the KNDy neuronal somata were surrounded by fibers containing SP in the OVX goats. The present results demonstrate anatomical evidence for a robust association between the KNDy and SP neural systems.


Assuntos
Núcleo Arqueado do Hipotálamo/citologia , Mapeamento Encefálico , Kisspeptinas/metabolismo , Substância P/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Feminino , Cabras
5.
J Reprod Dev ; 63(3): 305-310, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28344194

RESUMO

The present study aimed to evaluate hormonal responses and their association with the TAK-683 blood concentrations in goats administered TAK-683 at a low dose, which had been previously determined as the minimally effective dose for luteinizing hormone (LH) stimulation in ovariectomized goats. In Experiment 1, 5 µg of TAK-683 treatment had no significant stimulatory effect on LH secretion in ovariectomized Shiba goats (n = 4). In Experiment 2, cycling goats received the treatment of prostaglandin F2α and progesterone-releasing controlled internal drug releasing (CIDR) to induce the follicular phase, then they were treated with 5 µg of TAK-683 (hour 0) intravenously (n = 4, IV) or subcutaneously (n = 3, SC) or with vehicle intravenously (n = 4, control) at 12 h after CIDR removal. Blood samples were collected at 10-min (-2-6 h), 2-h (6-24 h), or 6-h (24-48 h) intervals. Ovarian ultrasonographic images were assessed daily to confirm ovulation after the treatment. A surge-like release of LH was immediately observed after injection in all animals in the IV (peak time: 4.2 ± 0.6 h, peak concentration: 73.3 ± 27.5 ng/ml) and SC (peak time: 4.6 ± 0.4 h, peak concentration: 62.6 ± 23.2 ng/ml) groups, but not in the control group. Ovulation was detected within 3 days after TAK-683 injection in all animals in the IV and SC groups, and the interval period from TAK-683 administration to ovulation in the IV group was significantly (P < 0.05) shorter than that of the control group. No significant changes were observed between the IV and SC groups in terms of luteal diameter and blood progesterone levels after ovulation. The present findings suggest that the involvement of one or more ovarian factor(s) is indispensable for a TAK-683-induced LH surge leading to ovulation in goats.


Assuntos
Kisspeptinas/administração & dosagem , Hormônio Luteinizante/metabolismo , Ovário/fisiologia , Animais , Feminino , Cabras , Kisspeptinas/sangue
6.
J Reprod Dev ; 61(1): 20-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25345909

RESUMO

Recent evidence suggests that neurokinin B (NKB), a member of the neurokinin (tachykinin) peptide family, plays a pivotal role in gonadotropin-releasing hormone (GnRH) pulse generation. Three types of neurokinin receptors (NKRs), NK1R, NK2R and NK3R, are found in the brain. Although NKB preferentially binds to NK3R, other NKRs are possibly also involved in NKB action. The present study examined the effects of intravenous administration of the NKR subtype-selective agonists GR73632 (NK1R), GR64349 (NK2R), and senktide (NK3R) on GnRH pulse generator activity and luteinizing hormone (LH) secretion. Multiple-unit activity (MUA) was monitored in ovariectomized goats (n = 5) implanted with recording electrodes. Characteristic increases in MUA (MUA volleys) were considered GnRH pulse generator activity. Although three NKR agonists dose-dependently induced an MUA volley and an accompanying increase in LH secretion, the efficacy in inducing the volley markedly differed. As little as 10 nmol of senktide induced an MUA volley in all goats, whereas a dose of 1000 nmol was only effective for the NK1R and NK2R agonists in two and four goats, respectively. When the treatment failed to evoke an MUA volley, no apparent change was observed in the MUA or LH secretion. Similar effects of the NK2R and NK3R agonists were observed in the presence of estradiol. The results demonstrated that NK3R plays a predominant role in GnRH pulse generation and suggested that the contributions of NK1R and NK2R to this mechanism may be few, if any, in goats.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Receptores da Neurocinina-1/agonistas , Receptores da Neurocinina-2/agonistas , Receptores da Neurocinina-3/agonistas , Animais , Estradiol/química , Feminino , Cabras , Infusões Intravenosas , Kisspeptinas/metabolismo , Ligantes , Hormônio Luteinizante/metabolismo , Neurocinina A/administração & dosagem , Neurocinina A/análogos & derivados , Fragmentos de Peptídeos/administração & dosagem , Receptores da Neurocinina-1/metabolismo , Receptores da Neurocinina-2/metabolismo , Receptores da Neurocinina-3/metabolismo , Transdução de Sinais , Substância P/administração & dosagem , Substância P/análogos & derivados , Fatores de Tempo
7.
Proc Natl Acad Sci U S A ; 109(20): E1294-301, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22505735

RESUMO

This study aims to determine the epigenetic mechanism regulating Kiss1 gene expression in the anteroventral periventricular nucleus (AVPV) to understand the mechanism underlying estrogen-positive feedback action on gonadotropin-releasing hormone/gonadotropin surge. We investigated estrogen regulation of the epigenetic status of the mouse AVPV Kiss1 gene locus in comparison with the arcuate nucleus (ARC), in which Kiss1 expression is down-regulated by estrogen. Histone of AVPV Kiss1 promoter region was highly acetylated, and estrogen receptor α was highly recruited at the region by estrogen. In contrast, the histone of ARC Kiss1 promoter region was deacetylated by estrogen. Inhibition of histone deacetylation up-regulated in vitro Kiss1 expression in a hypothalamic non-Kiss1-expressing cell line. Gene conformation analysis indicated that estrogen induced formation of a chromatin loop between Kiss1 promoter and the 3' intergenic region, suggesting that the intergenic region serves to enhance estrogen-dependent Kiss1 expression in the AVPV. This notion was proved, because transgenic reporter mice with a complete Kiss1 locus sequence showed kisspeptin neuron-specific GFP expression in both the AVPV and ARC, but the deletion of the 3' region resulted in greatly reduced GFP expression only in the AVPV. Taken together, these results demonstrate that estrogen induces recruitment of estrogen receptor α and histone acetylation in the Kiss1 promoter region of the AVPV and consequently enhances chromatin loop formation of Kiss1 promoter and Kiss1 gene enhancer, resulting in an increase in AVPV-specific Kiss1 gene expression. These results indicate that epigenetic regulation of the Kiss1 gene is involved in estrogen-positive feedback to generate the gonadotropin-releasing hormone/gonadotropin surge.


Assuntos
Núcleos Anteriores do Tálamo/metabolismo , Epigênese Genética/fisiologia , Estrogênios/metabolismo , Retroalimentação Fisiológica/fisiologia , Regulação da Expressão Gênica/fisiologia , Kisspeptinas/metabolismo , Acetilação , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Sequência de Bases , DNA Intergênico/metabolismo , Epigênese Genética/genética , Hormônio Liberador de Gonadotropina/metabolismo , Proteínas de Fluorescência Verde/genética , Histonas/metabolismo , Kisspeptinas/genética , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Análise de Sequência de DNA
8.
Neuroendocrinology ; 100(2-3): 250-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25428554

RESUMO

The continuous activation of the kisspeptin receptor by its agonists causes the abrogation of kisspeptin signaling, leading to decreased pulsatile luteinizing hormone (LH) secretion. Employing this phenomenon as a tool for probing kisspeptin action, this study aimed to clarify the role of kisspeptin in gonadotropin-releasing hormone (GnRH) pulse generation in goats. We examined the effects of chronic administration of TAK-683, an investigational kisspeptin analog, on LH secretion, GnRH immunostaining, pituitary responses to exogenous GnRH, and GnRH pulse generator activity, reflected by a characteristic increase in multiple-unit activity (MUA volley). An osmotic pump containing TAK-683 was subcutaneously implanted on day 0. TAK-683 treatment dose-dependently suppressed pulsatile LH secretion on day 1. Higher doses of chronic TAK-683 profoundly suppressed pulsatile LH secretion but had little effect on GnRH immunostaining patterns and pituitary responses to GnRH on day 5. In ovariectomized goats, MUA volleys occurred at approximately every 30 min on day -1. On day 5 of chronic TAK-683 administration, pulsatile LH secretion was markedly suppressed, whereas MUA volleys were similar to those observed on day -1. Male pheromones and senktide (neurokinin B receptor agonist) induced an MUA volley but had no effect on LH secretion during chronic TAK-683 administration. The results indicate that the chronic administration of a kisspeptin analog profoundly suppresses pulsatile LH secretion without affecting GnRH content, pituitary function or GnRH pulse generator activity, and they suggest an indispensable role for kisspeptin signaling in the cascade driving GnRH/LH pulses by the GnRH pulse generator.


Assuntos
Relógios Biológicos/efeitos dos fármacos , Fármacos do Sistema Nervoso Central/administração & dosagem , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/efeitos dos fármacos , Kisspeptinas/administração & dosagem , Animais , Relógios Biológicos/fisiologia , Relação Dose-Resposta a Droga , Feminino , Cabras , Hipodermóclise , Hipotálamo/fisiologia , Bombas de Infusão Implantáveis , Hormônio Luteinizante/metabolismo , Masculino , Fragmentos de Peptídeos/farmacologia , Hipófise/efeitos dos fármacos , Hipófise/fisiologia , Receptores da Neurocinina-3/agonistas , Receptores da Neurocinina-3/metabolismo , Substância P/análogos & derivados , Substância P/farmacologia , Testosterona/farmacologia
9.
J Reprod Dev ; 59(1): 40-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23080371

RESUMO

Neurons in the arcuate nucleus (ARC) that concomitantly express kisspeptin, neurokinin B (NKB) and dynorphin A are termed KNDy neurons and are likely candidates for the intrinsic gonadotropin-releasing hormone (GnRH) pulse generator. Our hypothesis is that KNDy neurons are functionally and anatomically interconnected to generate discrete neural signals that govern pulsatile GnRH secretion. Our goal was to address this hypothesis using electrophysiological and anatomical experiments in goats. Bilateral electrodes targeting KNDy neurons were implanted into ovariectomized goats, and GnRH pulse generator activity, represented by characteristic increases in multiple-unit activity (MUA volleys), was measured. Spontaneous and pheromone- or senktide (an NKB receptor agonist)-induced MUA volleys were simultaneously recorded from both sides of the ARC. An anterograde tracer, biotinylated dextran amine (BDA), was also injected unilaterally into the ARC of castrated male goats, and the distribution of fibers containing both BDA and NKB was examined using dual-labeling histochemistry. The results showed that MUA volleys, regardless of origin (spontaneous or experimentally induced), occur simultaneously between the right and left sides of the ARC. Tract tracing indicated that axons projecting from NKB neurons in the ARC were directly apposed to other NKB neuronal cells located bilaterally in the ARC. These results demonstrate that GnRH pulse generator activity occurs synchronously between both sides of the ARC in goats and that KNDy neurons are bilaterally interconnected in the ARC via NKB-containing fibers. Taken together, the results suggest that KNDy neurons form a neuronal circuit to synchronize burst activity among KNDy neurons and thereby generate discrete neural signals that govern pulsatile GnRH secretion.


Assuntos
Dinorfinas/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Axônios/metabolismo , Eletrodos , Fenômenos Eletrofisiológicos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Cabras , Masculino , Fragmentos de Peptídeos/metabolismo , Feromônios/metabolismo , Substância P/análogos & derivados , Substância P/metabolismo
10.
J Reprod Dev ; 59(6): 563-8, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24047956

RESUMO

The aim of the present study was to determine if the estradiol-induced luteinizing hormone (LH) surge is influenced by the constant exposure to TAK-683, an investigational metastin/kisspeptin analog, that had been established to depress the pulsatile gonadotropin-releasing hormone (GnRH) and LH secretion in goats. Ovariectomized goats subcutaneously received TAK-683 (TAK-683 group, n=6) or vehicle (control group, n=6) constantly via subcutaneous implantation of an osmotic pump. Five days after the start of the treatment, estradiol was infused intravenously in both groups to evaluate the effects on the LH surge. Blood samples were collected at 6-min intervals for 4 h prior to the initiation of either the TAK-683 treatment or the estradiol infusion, to determine the profiles of pulsatile LH secretion. They were also collected at 2-h intervals from -4 h to 32 h after the start of estradiol infusion for analysis of LH surges. The frequency and mean concentrations of LH pulses in the TAK-683 group were remarkably suppressed 5 days after the start of TAK-683 treatment compared with those of the control group (P<0.05). On the other hand, a clear LH surge was observed in all animals of both groups. There were no significant differences in the LH concentrations for surge peak and the peak time of the LH surge between the TAK-683 and control groups. These findings suggest that the effects of continuous exposure to kisspeptin or its analog on the mechanism(s) that regulates the pulsatile and surge mode secretion of GnRH/LH are different in goats.


Assuntos
Drogas em Investigação/administração & dosagem , Hipotálamo/efeitos dos fármacos , Kisspeptinas/administração & dosagem , Hormônio Luteinizante/metabolismo , Neurônios/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Via Secretória/efeitos dos fármacos , Animais , Animais Endogâmicos , Núcleo Hipotalâmico Anterior/efeitos dos fármacos , Núcleo Hipotalâmico Anterior/metabolismo , Implantes de Medicamento , Drogas em Investigação/farmacologia , Estradiol/sangue , Estradiol/farmacocinética , Estradiol/farmacologia , Feminino , Cabras , Hipotálamo/metabolismo , Infusões Subcutâneas , Japão , Veias Jugulares , Kisspeptinas/farmacologia , Hormônio Luteinizante/sangue , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Ovariectomia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Taxa Secretória/efeitos dos fármacos
11.
Adv Exp Med Biol ; 784: 297-323, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23550012

RESUMO

The reproductive neuropeptide gonadotropin-releasing hormone (GnRH) has two modes of secretion. Besides the surge mode, which induces ovulation in females, the pulse mode of GnRH release is essential to cause various reproductive events in both sexes, such as spermatogenesis, follicular development, and sex steroid synthesis. Some environmental cues control gonadal activities through modulating GnRH pulse frequency. Researchers have looked for the anatomical location of the mechanism generating GnRH pulses, the GnRH pulse generator, in the brain, because an artificial manipulation of GnRH pulse frequency is of therapeutic importance to stimulate or suppress gonadal activity. Discoveries of kisspeptin and, consequently, KNDy (kisspeptin/neurokinin B/dynorphin) neurons in the hypothalamus have provided a clue to the possible location of the GnRH pulse generator. Our analyses of hypothalamic multiple-unit activity revealed that KNDy neurons located in the hypothalamic arcuate nucleus might play a central role in the generation of GnRH pulses in goats, and perhaps other mammalian species. This chapter further discusses the possible mechanisms for GnRH pulse generation.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Ovulação/fisiologia , Espermatogênese/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/citologia , Dinorfinas/metabolismo , Feminino , Cabras , Humanos , Masculino , Neurocinina B/metabolismo , Neurônios/citologia , Neurônios/metabolismo
12.
J Reprod Dev ; 58(6): 700-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22972185

RESUMO

Human genetic studies have suggested that kisspeptin and neurokinin B (NKB) play pivotal roles in the control of gonadotropin-releasing hormone (GnRH) secretion. However, the role of NKB in this context is less clear compared with that of kisspeptin. In the present study, we investigated the ratio of colocalization of kisspeptin and NKB in neurons in the arcuate nucleus (ARC), the effects of intracerebroventricular infusion of NKB on luteinizing hormone (LH) secretion and whether the treatment activates ARC kisspeptin/NKB neurons in seasonally anestrous ewes. Double-labeling immunohistochemistry revealed that the majority of kisspeptin neurons coexpressed NKB in the ARC. Infusion of NKB for 2 h into the lateral ventricle elicited a discharge of LH, which resulted in significant increases in LH concentrations between 20 and 50 min after the start of infusion compared with a saline-infused control. Animals were sacrificed immediately after the end of infusion, and Fos expression in ARC kisspeptin neurons was immunohistochemically examined. The NKB treatment activated kisspeptin neurons throughout the ARC, and approximately 70% of kisspeptin neurons expressed Fos immunoreactivity at the caudal portion of the nucleus. The present study demonstrated that a central infusion of NKB elicited a discharge of LH, which was associated with the activation of a large population of ARC kisspeptin/NKB neurons in seasonally anestrous ewes. The results suggest that NKB plays a stimulatory role in the control of pulsatile GnRH secretion and that the population of ARC kisspeptin/NKB neurons is one of sites of the NKB action in sheep.


Assuntos
Anestro/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Neurocinina B/metabolismo , Animais , Feminino , Hormônio Luteinizante/sangue , Neurocinina B/administração & dosagem , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ovinos
14.
J Neurosci ; 30(8): 3124-32, 2010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-20181609

RESUMO

Gonadotropin-releasing hormone (GnRH) neurons in the basal forebrain are the final common pathway through which the brain regulates reproduction. GnRH secretion occurs in a pulsatile manner, and indirect evidence suggests the kisspeptin neurons in the arcuate nucleus (ARC) serve as the central pacemaker that drives pulsatile GnRH secretion. The purpose of this study was to investigate the possible coexpression of kisspeptin, neurokinin B (NKB), and dynorphin A (Dyn) in neurons of the ARC of the goat and evaluate their potential roles in generating GnRH pulses. Using double and triple labeling, we confirmed that all three neuropeptides are coexpressed in the same population of neurons. Using electrophysiological techniques to record multiple-unit activity (MUA) in the medial basal hypothalamus, we found that bursts of MUA occurred at regular intervals in ovariectomized animals and that these repetitive bursts (volleys) were invariably associated with discrete pulses of luteinizing hormone (LH) (and by inference GnRH). Moreover, the frequency of MUA volleys was reduced by gonadal steroids, suggesting that the volleys reflect the rhythmic discharge of steroid-sensitive neurons that regulate GnRH secretion. Finally, we observed that central administration of Dyn-inhibit MUA volleys and pulsatile LH secretion, whereas NKB induced MUA volleys. These observations are consistent with the hypothesis that kisspeptin neurons in the ARC drive pulsatile GnRH and LH secretion, and suggest that NKB and Dyn expressed in those neurons are involved in the process of generating the rhythmic discharge of kisspeptin.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Dinorfinas/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Potenciais de Ação/fisiologia , Animais , Relógios Biológicos/fisiologia , Eletrofisiologia , Ciclo Estral/fisiologia , Feminino , Cabras , Hormônios Esteroides Gonadais/metabolismo , Kisspeptinas , Hormônio Luteinizante/metabolismo , Sistemas Neurossecretores/fisiologia , Ovariectomia , Periodicidade , Proteínas/metabolismo , Reprodução/fisiologia
15.
Neuroendocrinology ; 94(4): 323-32, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22116451

RESUMO

Kisspeptin has been thought to play pivotal roles in the control of both pulse and surge modes of gonadotropin-releasing hormone (GnRH) secretion. To clarify loci of kisspeptin action on GnRH neurons, the present study examined the morphology of the kisspeptin system and the associations between kisspeptin and GnRH systems in gonadally intact and castrated male goats. Kisspeptin-immunoreactive (ir) and Kiss1-positive neurons were found in the medial preoptic area of intact but not castrated goats. Kisspeptin-ir cell bodies and fibers in the arcuate nucleus (ARC) and median eminence (ME) were fewer in intact male goats compared with castrated animals. Apposition of kisspeptin-ir fibers on GnRH-ir cell bodies was very rare in both intact and castrated goats, whereas the intimate association of kisspeptin-ir fibers with GnRH-ir nerve terminals was observed in the ME of castrated animals. Neurokinin B immunoreactivity colocalized not only in kisspeptin-ir cell bodies in the ARC but also in kisspeptin-ir fibers in the ME, suggesting that a majority of kisspeptin-ir fibers projecting to the ME originates from the ARC. A dual immunoelectron microscopic examination revealed that nerve terminals containing kisspeptin-ir vesicles made direct contact with GnRH-ir nerve terminals at the ME of castrated goats. There was no evidence for the existence of the typical synaptic structure between kisspeptin- and GnRH-ir fibers. The present results suggest that the ARC kisspeptin neurons act on GnRH neurons at the ME to control (possibly the pulse mode of) GnRH secretion in males.


Assuntos
Hormônio Liberador de Gonadotropina/análise , Kisspeptinas/análise , Eminência Mediana/ultraestrutura , Neurônios/química , Animais , Núcleo Arqueado do Hipotálamo/química , Cabras , Hipotálamo/química , Imuno-Histoquímica , Masculino , Eminência Mediana/química , Eminência Mediana/citologia , Microscopia Imunoeletrônica , Neurocinina B/análise , Neurônios/ultraestrutura , Área Pré-Óptica/química
16.
J Reprod Dev ; 57(2): 197-202, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21123964

RESUMO

Exposure of females to the male pheromone induces pulsatile release of gonadotropin-releasing hormone (GnRH) in goats. Recently, kisspeptin neurons in the arcuate nucleus (ARC) have been suggested to represent the proximate source of the GnRH pulse generator. In this study, we examined the effects of the pheromone on multiple-unit activity (MUA) in female goats fitted with recording electrodes aimed at the ARC kisspeptin neurons. In all eight goats, periodic bursts in MUA (MUA volleys), which were considered to be electrophysiological manifestations of the GnRH pulse generator, were observed. The mean intervolley interval (T) during the control period was calculated in each goat that was then exposed to the male pheromone for 1 sec at timings of 1/4 T, 1/2 T or 3/4 T after one regularly occurring MUA volley. An instantaneous rise in MUA was observed immediately after the exposure regardless of timing. Exposure at a timing of 3/4 T resulted in an MUA volley within 60 sec following the instantaneous rise in all goats. In contrast, an MUA volley was induced in only 2 goats by exposure at 1/2 T, while exposure at 1/4 T failed to induce an MUA volley in any goats. These results suggest that transmission of the pheromone signal to the ARC, represented by an instantaneous rise, activates the GnRH pulse generator. Moreover, the timing-dependent pheromone action in inducing an MUA volley indicates that the GnRH pulse generator has a refractory period for the pheromone signal after the burst.


Assuntos
Núcleo Arqueado do Hipotálamo/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Atrativos Sexuais/fisiologia , Animais , Potenciais Evocados , Feminino , Cabras , Hormônio Luteinizante/sangue , Masculino
17.
Nat Prod Res ; 35(23): 5075-5080, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32538152

RESUMO

The red alga Chondria armata is known to produce and contain a rich diversity of secondary metabolites, such as domoic acid-related alkaloids and triterpene polyethers. Our investigation on red alga C. armata from Kagoshima coast, Japan, resulted in the isolation of two new triterpene polyethers, bandokorols A (1) and B (2). The structures of these compounds were determined based on spectroscopic data such as infrared (FTIR), 1H-NMR, APT, 1H-1H-COSY, HSQC, HMBC, NOESY and FAB mass spectrometry (HRFABMS). The anticancer potentials of these compounds were tested against adult T-cell leukaemia (ATL), S1T cells and their IC50 values are reported here.


Assuntos
Rodófitas , Esqualeno , Japão , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular
18.
J Neurosci ; 29(38): 11859-66, 2009 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-19776272

RESUMO

Kisspeptin is encoded by the Kiss1 gene, and kisspeptin signaling plays a critical role in reproduction. In rodents, kisspeptin neurons in the arcuate nucleus (Arc) provide tonic drive to gonadotropin-releasing hormone (GnRH) neurons, which in turn supports basal luteinizing hormone (LH) secretion. Our objectives were to determine whether preprodynorphin (Dyn) and neurokinin B (NKB) are coexpressed in Kiss1 neurons in the mouse and to evaluate its physiological significance. Using in situ hybridization, we found that Kiss1 neurons in the Arc of female mice not only express the Dyn and NKB genes but also the NKB receptor gene (NK3) and the Dyn receptor [the kappa opioid receptor (KOR)] gene. We also found that expression of the Dyn, NKB, KOR, and NK3 in the Arc are inhibited by estradiol, as has been established for Kiss1, and confirmed that Dyn and NKB inhibit LH secretion. Moreover, using Dyn and KOR knock-out mice, we found that long-term disruption of Dyn/KOR signaling compromises the rise of LH after ovariectomy. We propose a model whereby NKB and dynorphin act autosynaptically on kisspeptin neurons in the Arc to synchronize and shape the pulsatile secretion of kisspeptin and drive the release of GnRH from fibers in the median eminence.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Dinorfinas/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , Precursores de Proteínas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Dinorfinas/genética , Estradiol/metabolismo , Feminino , Hibridização In Situ , Kisspeptinas , Hormônio Luteinizante/sangue , Hormônio Luteinizante/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Neurológicos , Ovariectomia , Precursores de Proteínas/genética , RNA Mensageiro/metabolismo , Receptores da Neurocinina-3/agonistas , Receptores da Neurocinina-3/metabolismo , Receptores Opioides/agonistas , Receptores Opioides/genética , Receptores Opioides/metabolismo , Transdução de Sinais
19.
J Nat Prod ; 73(9): 1512-8, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20718449

RESUMO

Seven new isomalabaricane derivatives, rhabdastins A-G (1-7), and a new monocyclic triterpene glycoside, rhabdastoside A (8), have been isolated from the methanol extract of the sponge Rhabdastrella globostellata, collected at Amami-oshima, Japan. Three of them were isolated as their corresponding methyl esters, rhabdastins A-D (1-3). Their structures were determined on the basis of spectroscopic and X-ray diffraction analyses. The isolated compounds were evaluated for their cytotoxicity against the proliferation of promyelocytic leukemia HL-60 cells. Compounds 4, 5, 7, and 11, possessing a cyclopentane side chain, exhibited weak activity, with IC(50) values of 21, 29, 44, and 11 µM, respectively, while compounds 1, 2, and 3, with a 2-substituted-propanoate side chain, were inactive at 100 µM. In addition, the mechanism of cytotoxicity of compounds 4 and 5 was investigated.


Assuntos
Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Glicosídeos/isolamento & purificação , Glicosídeos/farmacologia , Poríferos/química , Triterpenos/isolamento & purificação , Triterpenos/farmacologia , Animais , Antineoplásicos/química , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Glicosídeos/química , Células HL-60 , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Triterpenos/química
20.
J Oleo Sci ; 69(6): 643-648, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32493886

RESUMO

Sour citrus are prized for their flavor and fragrance. This work identified the components of the peel oil of Hetsuka-daidai (Citrus sp. hetsukadaidai), a special sour citrus that is native to the southern part of the Osumi peninsula, Kagoshima, Japan. These compounds were compared to those identified from the peels of six other major sour citrus: lime (Citrus latifolia), lemon (Citrus limon), Yuzu (Citrus junos), Kabusu (Citrus aurantium), Kabosu (Citrus sphaerocarpa), and Sudachi (Citrus sudachi). Peel oil contents were analyzed for the duration of four months during harvest season to investigate the differences in peel oil/fragrance during ripening. These results could facilitate the development of preferred flavor and scent profiles using local species.


Assuntos
Citrus/química , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Estações do Ano , Cromatografia Gasosa-Espectrometria de Massas , Japão , Óleos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA