Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dev Biol ; 391(2): 196-206, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24768892

RESUMO

The broad diversity of neurons is vital to neuronal functions. During vertebrate development, the spinal cord is a site of sensory and motor tasks coordinated by interneurons and the ongoing neurogenesis. In the spinal cord, V2-interneuron (V2-IN) progenitors (p2) develop into excitatory V2a-INs and inhibitory V2b-INs. The balance of these two types of interneurons requires precise control in the number and timing of their production. Here, using zebrafish embryos with altered Notch signaling, we show that different combinations of Notch ligands and receptors regulate two functions: the maintenance of p2 progenitor cells and the V2a/V2b cell fate decision in V2-IN development. Two ligands, DeltaA and DeltaD, and three receptors, Notch1a, Notch1b, and Notch3 redundantly contribute to p2 progenitor maintenance. On the other hand, DeltaA, DeltaC, and Notch1a mainly contribute to the V2a/V2b cell fate determination. A ubiquitin ligase Mib, which activates Notch ligands, acts in both functions through its activation of DeltaA, DeltaC, and DeltaD. Moreover, p2 progenitor maintenance and V2a/V2b fate determination are not distinct temporal processes, but occur within the same time frame during development. In conclusion, V2-IN cell progenitor proliferation and V2a/V2b cell fate determination involve signaling through different sets of Notch ligand-receptor combinations that occur concurrently during development in zebrafish.


Assuntos
Interneurônios/citologia , Células-Tronco Neurais/citologia , Neurogênese/genética , Receptores Notch/genética , Medula Espinal/embriologia , Peixe-Zebra/embriologia , Animais , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes/veterinária , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Morfolinos/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Receptor Notch1/metabolismo , Receptor Notch3 , Receptores Notch/metabolismo , Transdução de Sinais/genética , Medula Espinal/citologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
J Comp Neurol ; 529(8): 2099-2124, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33236346

RESUMO

Over 40 distinct types of retinal ganglion cells (RGCs) generate parallel processing pathways in the visual system. In mice, two subdivisions of the dorsal lateral geniculate nucleus (dLGN), the core and the shell, organize distinct parallel channels to transmit visual information from the retina to the primary visual cortex (V1). To investigate how the dLGN core and shell differentially integrate visual information and other modalities, we mapped synaptic input sources to each dLGN subdivision at the cell-type level with G-deleted rabies viral vectors. The monosynaptic circuit tracing revealed that dLGN core neurons received inputs from alpha-RGCs, Layer 6 neurons of the V1, the superficial and intermediate layers of the superior colliculus (SC), the internal ventral LGN, the lower layer of the external ventral LGN (vLGNe), the intergeniculate leaf, the thalamic reticular nucleus (TRN), and the pretectal nucleus (PT). Conversely, shell neurons received inputs from alpha-RGCs and direction-selective ganglion cells of the retina, Layer 6 neurons of the V1, the superficial layer of the SC, the superficial and lower layers of the vLGNe, the TRN, the PT, and the parabigeminal nucleus. The present study provides anatomical evidence of the cell type- and layer-specific convergence in dLGN core and shell neurons. These findings suggest that dLGN core neurons integrate and process more multimodal information along with visual information than shell neurons and that LGN core and shell neurons integrate different types of information, send their own convergent information to discrete populations of the V1, and differentially contribute to visual perception and behavior.


Assuntos
Corpos Geniculados/citologia , Neurônios/citologia , Vias Visuais/citologia , Animais , Feminino , Masculino , Camundongos
3.
Biochem Biophys Res Commun ; 398(1): 118-24, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20558143

RESUMO

Delta family proteins are transmembrane molecules that bind Notch receptors and activate downstream signaling events in neighboring cells. In addition to serving as Notch ligands, Notch-independent roles for Delta have been suggested but are not fully understood. Here, we demonstrate a previously unrecognized role for Delta in filopodial actin formation. Delta1 and Delta4, but not Delta3, exhibit filopodial protrusive activity, and this activity is independent of Notch signaling. The filopodial activity of Delta1 does not depend on the PDZ-binding domain at the C-terminus; however, the intracellular membrane-proximal region that is anchored to the plasma membrane plays an important role in filopodial activity. We further identified a Notch-independent role of DeltaD in neuronal cell migration in zebrafish. These findings suggest a possible functional link between Notch-independent filopodial activity of Delta and the control of cell motility.


Assuntos
Actinas/metabolismo , Movimento Celular , Proteínas de Membrana/metabolismo , Neurônios/fisiologia , Pseudópodes/metabolismo , Receptores Notch/metabolismo , Sequência de Aminoácidos , Animais , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Dados de Sequência Molecular , Neurônios/metabolismo , Transdução de Sinais , Peixe-Zebra/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA