Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(11): e1010019, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34780571

RESUMO

Gammaherpesviruses establish life-long infections within their host and have been shown to be the causative agents of devastating malignancies. Chronic infection within the host is mediated through cycles of transcriptionally quiescent stages of latency with periods of reactivation into detectable lytic and productive infection. The mechanisms that regulate reactivation from latency remain poorly understood. Previously, we defined a critical role for the viral cyclin in promoting reactivation from latency. Disruption of the viral cyclin had no impact on the frequency of cells containing viral genome during latency, yet it remains unclear whether the viral cyclin influences latently infected cells in a qualitative manner. To define the impact of the viral cyclin on properties of latent infection, we utilized a viral cyclin deficient variant expressing a LANA-beta-lactamase fusion protein (LANA::ßla), to enumerate both the cellular distribution and frequency of LANA gene expression. Disruption of the viral cyclin did not affect the cellular distribution of latently infected cells, but did result in a significant decrease in the frequency of cells that expressed LANA::ßla across multiple tissues and in both immunocompetent and immunodeficient hosts. Strikingly, whereas the cyclin-deficient virus had a reactivation defect in bulk culture, sort purified cyclin-deficient LANA::ßla expressing cells were fully capable of reactivation. These data emphasize that the γHV68 latent reservoir is comprised of at least two distinct stages of infection characterized by differential LANA expression, and that a primary function of the viral cyclin is to promote LANA expression during latency, a state associated with ex vivo reactivation competence.


Assuntos
Antígenos Virais/metabolismo , Ciclinas/metabolismo , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Virais/metabolismo , Ativação Viral , Replicação Viral , Animais , Antígenos Virais/genética , Ciclinas/genética , Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/virologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Infecção Persistente , Proteínas Virais/genética , Latência Viral
2.
PLoS Pathog ; 15(6): e1007849, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31166996

RESUMO

Virus-host interactions are frequently studied in bulk cell populations, obscuring cell-to-cell variation. Here we investigate endogenous herpesvirus gene expression at the single-cell level, combining a sensitive and robust fluorescent in situ hybridization platform with multiparameter flow cytometry, to study the expression of gammaherpesvirus non-coding RNAs (ncRNAs) during lytic replication, latent infection and reactivation in vitro. This method allowed robust detection of viral ncRNAs of murine gammaherpesvirus 68 (γHV68), Kaposi's sarcoma associated herpesvirus and Epstein-Barr virus, revealing variable expression at the single-cell level. By quantifying the inter-relationship of viral ncRNA, viral mRNA, viral protein and host mRNA regulation during γHV68 infection, we find heterogeneous and asynchronous gene expression during latency and reactivation, with reactivation from latency identified by a distinct gene expression profile within rare cells. Further, during lytic replication with γHV68, we find many cells have limited viral gene expression, with only a fraction of cells showing robust gene expression, dynamic RNA localization, and progressive infection. Lytic viral gene expression was enhanced in primary fibroblasts and by conditions associated with enhanced viral replication, with multiple subpopulations of cells present in even highly permissive infection conditions. These findings, powered by single-cell analysis integrated with automated clustering algorithms, suggest inefficient or abortive γHV infection in many cells, and identify substantial heterogeneity in viral gene expression at the single-cell level.


Assuntos
Gammaherpesvirinae/fisiologia , Regulação Viral da Expressão Gênica/fisiologia , Infecções por Herpesviridae/metabolismo , RNA Mensageiro/biossíntese , RNA não Traduzido/biossíntese , RNA Viral/biossíntese , Replicação Viral/fisiologia , Animais , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/patologia , Humanos , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA não Traduzido/genética , RNA Viral/genética
3.
J Immunol ; 200(1): 3-22, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29255085

RESUMO

Mass cytometry has revolutionized the study of cellular and phenotypic diversity, significantly expanding the number of phenotypic and functional characteristics that can be measured at the single-cell level. This high-dimensional analysis platform has necessitated the development of new data analysis approaches. Many of these algorithms circumvent traditional approaches used in flow cytometric analysis, fundamentally changing the way these data are analyzed and interpreted. For the beginner, however, the large number of algorithms that have been developed, as well as the lack of consensus on best practices for analyzing these data, raise multiple questions: Which algorithm is the best for analyzing a dataset? How do different algorithms compare? How can one move beyond data visualization to gain new biological insights? In this article, we describe our experiences as recent adopters of mass cytometry. By analyzing a single dataset using five cytometry by time-of-flight analysis platforms (viSNE, SPADE, X-shift, PhenoGraph, and Citrus), we identify important considerations and challenges that users should be aware of when using these different methods and common and unique insights that can be revealed by these different methods. By providing annotated workflow and figures, these analyses present a practical guide for investigators analyzing high-dimensional datasets. In total, these analyses emphasize the benefits of integrating multiple cytometry by time-of-flight analysis algorithms to gain complementary insights into these high-dimensional datasets.


Assuntos
Diagnóstico por Imagem/métodos , Citometria de Fluxo/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Animais , Separação Celular , Biologia Computacional , Citometria de Fluxo/instrumentação , Humanos , Processamento de Imagem Assistida por Computador/instrumentação , Imunofenotipagem , Guias de Prática Clínica como Assunto
4.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29298882

RESUMO

Gammaherpesviruses are common viruses associated with lifelong infection and increased disease risk. Reactivation from latency aids the virus in maintaining infection throughout the life of the host and is responsible for a wide array of disease outcomes. Previously, we demonstrated that the virus-encoded cyclin (v-cyclin) of murine gammaherpesvirus 68 (γHV68) is essential for optimal reactivation from latency in normal mice but not in mice lacking the host tumor suppressor p18INK4c (p18). Whether p18 plays a cell-intrinsic or -extrinsic role in constraining reactivation remains unclear. Here, we generated recombinant viruses in which we replaced the viral cyclin with the cellular p18INK4c gene (p18KI) for targeted expression of p18, specifically within infected cells. We find that the p18KI virus is similar to the cyclin-deficient virus (cycKO) in lytic infection, establishment of latency, and infected cell reservoirs. While the cycKO virus is capable of reactivation in p18-deficient mice, expression of p18 from the p18KI virus results in a profound reactivation defect. These data demonstrate that p18 limits reactivation within latently infected cells, functioning in a cell-intrinsic manner. Further, the p18KI virus showed greater attenuation of virus-induced lethal pneumonia than the cycKO virus, indicating that p18 could further restrict γHV68 pathogenesis even in p18-sufficient mice. These studies demonstrate that host p18 imposes the requirement for the viral cyclin to reactivate from latency by functioning in latently infected cells and that p18 expression is associated with decreased disease, thereby identifying p18 as a compelling host target to limit chronic gammaherpesvirus pathogenesis.IMPORTANCE Gammaherpesviruses are ubiquitous viruses associated with multiple malignancies. The propensity to cycle between latency and reactivation results in an infection that is never cleared and often difficult to treat. Understanding the balance between latency and reactivation is integral to treating gammaherpesvirus infection and associated disease outcomes. This work characterizes the role of a novel inhibitor of reactivation, host p18INK4c, thereby bringing more clarity to a complex process with significant outcomes for infected individuals.


Assuntos
Inibidor de Quinase Dependente de Ciclina p18 , Gammaherpesvirinae , Regulação Viral da Expressão Gênica , Pneumonia Viral , Ativação Viral , Latência Viral , Animais , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p18/biossíntese , Inibidor de Quinase Dependente de Ciclina p18/genética , Gammaherpesvirinae/genética , Gammaherpesvirinae/metabolismo , Gammaherpesvirinae/patogenicidade , Técnicas de Silenciamento de Genes , Camundongos , Pneumonia Viral/genética , Pneumonia Viral/metabolismo , Pneumonia Viral/patologia , Pneumonia Viral/virologia
5.
J Virol ; 88(7): 3719-32, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24429363

RESUMO

UNLABELLED: Ross River virus (RRV) is one of a group of mosquito-transmitted alphaviruses that cause debilitating, and often chronic, musculoskeletal disease in humans. Previously, we reported that replacement of the nonstructural protein 1 (nsP1) gene of the mouse-virulent RRV strain T48 with that from the mouse-avirulent strain DC5692 generated a virus that was attenuated in a mouse model of disease. Here we find that the six nsP1 nonsynonymous nucleotide differences between strains T48 and DC5692 are determinants of RRV virulence, and we identify two nonsynonymous nucleotide changes as sufficient for the attenuated phenotype. RRV T48 carrying the six nonsynonymous DC5692 nucleotide differences (RRV-T48-nsP1(6M)) was attenuated in both wild-type and Rag1(-/-) mice. Despite the attenuated phenotype, RRV T48 and RRV-T48-nsP1(6M) loads in tissues of wild-type and Rag1(-/-) mice were indistinguishable from 1 to 3 days postinoculation. RRV-T48-nsP1(6M) loads in skeletal muscle tissue, but not in other tissues, decreased dramatically by 5 days postinoculation in both wild-type and Rag1(-/-) mice, suggesting that the RRV-T48-nsP1(6M) mutant is more sensitive to innate antiviral effectors than RRV T48 in a tissue-specific manner. In vitro, we found that the attenuating mutations in nsP1 conferred enhanced sensitivity to type I interferon. In agreement with these findings, RRV T48 and RRV-T48-nsP1(6M) loads were similar in mice deficient in the type I interferon receptor. Our findings suggest that the type I IFN response controls RRV infection in a tissue-specific manner and that specific amino acid changes in nsP1 are determinants of RRV virulence by regulating the sensitivity of RRV to interferon. IMPORTANCE: Arthritogenic alphaviruses, including Ross River virus (RRV), infect humans and cause debilitating pain and inflammation of the musculoskeletal system. In this study, we identified coding changes in the RRV nsP1 gene that control the virulence of RRV and its sensitivity to the antiviral type I interferon response, a major component of antiviral defense in mammals. Furthermore, our studies revealed that the effects of these attenuating mutations are tissue specific. These findings suggest that these mutations in nsP1 influence the sensitivity of RRV to type I interferon only in specific host tissues. The new knowledge gained from these studies contributes to our understanding of host responses that control alphavirus infection and viral determinants that counteract these responses.


Assuntos
Infecções por Alphavirus/virologia , Interações Hospedeiro-Patógeno , Interferon Tipo I/imunologia , Mutação de Sentido Incorreto , Ross River virus/patogenicidade , Proteínas não Estruturais Virais/metabolismo , Fatores de Virulência/metabolismo , Infecções por Alphavirus/patologia , Estruturas Animais/virologia , Animais , Análise Mutacional de DNA , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ross River virus/imunologia , Carga Viral , Proteínas não Estruturais Virais/genética , Virulência , Fatores de Virulência/genética
6.
J Virol ; 87(10): 5970-84, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23514884

RESUMO

Arthritogenic alphaviruses are human pathogens maintained in nature through alternating replication in vertebrates and mosquitoes. Using chimeric viruses, we previously reported that replacement of the PE2 coding region of the T48 strain of Ross River virus (RRV-T48) with that from the attenuated DC5692 strain, which differ by 7 amino acids, resulted in an attenuated disease phenotype in a mouse model of RRV-induced rheumatic disease. Here, we demonstrate that introduction of one of these amino acid differences, a tyrosine (Y)-to-histidine (H) change at position 18 of the E2 glycoprotein (E2 Y18H), into the RRV-T48 genetic background was sufficient to generate a virus that caused dramatically less severe musculoskeletal disease in mice. The attenuated phenotype of RRV-T48 E2 Y18H was associated with reduced viral loads in musculoskeletal tissues, reduced viremia, and less efficient virus spread. Consistent with these findings, RRV-T48 E2 Y18H replicated less well in mammalian cells in vitro due to significantly reduced PFU released per infected cell. In contrast, RRV-T48 E2 Y18H replicated more efficiently than RRV-T48 in C6/36 mosquito cells. Competition studies confirmed that RRV-T48 E2 Y18H had a fitness advantage in mosquito cells and a fitness disadvantage in mammalian cells. Interestingly, all sequenced Ross River viruses encode either a tyrosine or a histidine at E2 position 18, and this holds true for other alphaviruses in the Semliki Forest antigenic complex. Taken together, these findings suggest that a tyrosine-to-histidine switch at E2 position 18 functions as a regulator of RRV fitness in vertebrate and invertebrate cells.


Assuntos
Substituição de Aminoácidos , Proteínas do Capsídeo/metabolismo , Histidina/genética , Ross River virus/patogenicidade , Tirosina/genética , Proteínas do Envelope Viral/metabolismo , Fatores de Virulência/metabolismo , Infecções por Alphavirus/patologia , Infecções por Alphavirus/virologia , Animais , Proteínas do Capsídeo/genética , Linhagem Celular , Culicidae , Modelos Animais de Doenças , Histidina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Músculo Esquelético/virologia , Ross River virus/genética , Ross River virus/fisiologia , Tirosina/metabolismo , Proteínas do Envelope Viral/genética , Carga Viral , Viremia , Virulência , Fatores de Virulência/genética , Replicação Viral
7.
J Virol ; 87(24): 13878-88, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24131709

RESUMO

Chikungunya virus (CHIKV) is a reemerging mosquito-borne pathogen that causes incapacitating disease in humans characterized by intense joint pain that can persist for weeks, months, or even years. Although there is some evidence of persistent CHIKV infection in humans suffering from chronic rheumatologic disease symptoms, little is known about chronic disease pathogenesis, and no specific therapies exist for acute or chronic CHIKV disease. To investigate mechanisms of chronic CHIKV-induced disease, we utilized a mouse model and defined the duration of CHIKV infection in tissues and the associated histopathological changes. Although CHIKV RNA was readily detectable in a variety of tissues very early after infection, CHIKV RNA persisted specifically in joint-associated tissues for at least 16 weeks. Inoculation of Rag1(-/-) mice, which lack T and B cells, resulted in higher viral levels in a variety of tissues, suggesting that adaptive immunity controls the tissue specificity and persistence of CHIKV infection. The presence of CHIKV RNA in tissues of wild-type and Rag1(-/-) mice was associated with histopathological evidence of synovitis, arthritis, and tendonitis; thus, CHIKV-induced persistent arthritis is not mediated primarily by adaptive immune responses. Finally, we show that prophylactic administration of CHIKV-specific monoclonal antibodies prevented the establishment of CHIKV persistence, whereas therapeutic administration had tissue-specific efficacy. These findings suggest that chronic musculoskeletal tissue pathology is caused by persistent CHIKV infection and controlled by adaptive immune responses. Our results have significant implications for the development of strategies to mitigate the disease burden associated with CHIKV infection in humans.


Assuntos
Imunidade Adaptativa , Infecções por Alphavirus/imunologia , Artralgia/imunologia , Vírus Chikungunya/fisiologia , Infecções por Alphavirus/tratamento farmacológico , Infecções por Alphavirus/patologia , Infecções por Alphavirus/virologia , Animais , Anticorpos Antivirais/uso terapêutico , Artralgia/tratamento farmacológico , Artralgia/patologia , Artralgia/virologia , Febre de Chikungunya , Doença Crônica , Modelos Animais de Doenças , Feminino , Humanos , Articulações/imunologia , Articulações/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
J Immunol ; 189(8): 4047-59, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22972923

RESUMO

Chikungunya virus (CHIKV) and Ross River virus (RRV) cause a debilitating, and often chronic, musculoskeletal inflammatory disease in humans. Macrophages constitute the major inflammatory infiltrates in musculoskeletal tissues during these infections. However, the precise macrophage effector functions that affect the pathogenesis of arthritogenic alphaviruses have not been defined. We hypothesized that the severe damage to musculoskeletal tissues observed in RRV- or CHIKV-infected mice would promote a wound-healing response characterized by M2-like macrophages. Indeed, we found that RRV- and CHIKV-induced musculoskeletal inflammatory lesions, and macrophages present in these lesions, have a unique gene-expression pattern characterized by high expression of arginase 1 and Ym1/Chi3l3 in the absence of FIZZ1/Relmα that is consistent with an M2-like activation phenotype. Strikingly, mice specifically deleted for arginase 1 in neutrophils and macrophages had dramatically reduced viral loads and improved pathology in musculoskeletal tissues at late times post-RRV infection. These findings indicate that arthritogenic alphavirus infection drives a unique myeloid cell activation program in inflamed musculoskeletal tissues that inhibits virus clearance and impedes disease resolution in an arginase 1-dependent manner.


Assuntos
Infecções por Alphavirus/imunologia , Arginase/genética , Vírus Chikungunya/imunologia , Deleção de Genes , Macrófagos/imunologia , Neutrófilos/imunologia , Ross River virus/imunologia , Regulação para Cima/imunologia , Infecções por Alphavirus/enzimologia , Infecções por Alphavirus/terapia , Animais , Arginase/antagonistas & inibidores , Linhagem Celular , Cricetinae , Humanos , Inflamação/enzimologia , Inflamação/imunologia , Inflamação/patologia , Macrófagos/enzimologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Mieloides/enzimologia , Células Mieloides/imunologia , Células Mieloides/virologia , Neutrófilos/enzimologia , Neutrófilos/virologia , Carga Viral/imunologia
9.
J Med Chem ; 67(11): 9759-9771, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38820338

RESUMO

HER2 overexpression and amplification have been identified as oncogenic drivers, and the development of therapies to treat tumors harboring these markers has received considerable attention. Activation of HER2 signaling and subsequent cell growth can also be induced by HER2 mutations, including the common YVMA insertion in exon 20 within the kinase domain. Enhertu is currently the only approved treatment for HER2 mutant tumors in NSCLC. TKIs tested in this space have suffered from off-target activity, primarily due to EGFRWT inhibition or attenuated activity against HER2 mutants. The goal of this work was to identify a TKI that would provide robust inhibition of oncogenic HER2WT and HER2 mutants while sparing EGFRWT activity. Herein, we describe the development of a potent, covalent inhibitor of HER2WT and the YVMA insertion mutant while providing oral bioavailability and avoiding the inhibition of EGFRWT.


Assuntos
Inibidores de Proteínas Quinases , Receptor ErbB-2 , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Animais , Descoberta de Drogas , Mutação , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Camundongos , Ratos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo
10.
J Med Chem ; 67(16): 14466-14477, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39088797

RESUMO

Mesenchymal-epithelial transition factor (MET) is a receptor tyrosine kinase that serves a critical function in numerous developmental, morphogenic, and proliferative signaling pathways. If dysregulated, MET has been shown to be involved in the development and survival of several cancers, including non-small cell lung cancer (NSCLC), renal cancer, and other epithelial tumors. Currently, the clinical efficacy of FDA approved MET inhibitors is limited by on-target acquired resistance, dose-limiting toxicities, and less than optimal efficacy against brain metastasis. Therefore, there is still an unmet medical need for the development of MET inhibitors to address these issues. Herein we report the application of structure-based design for the discovery and development of a novel class of brain-penetrant MET inhibitors with enhanced activity against clinically relevant mutations and improved selectivity. Compound 13 with a MET D1228N cell line IC50 value of 23 nM showed good efficacy in an intracranial tumor model and increased the median overall survival of the animals to 100% when dosed orally at 100 mg/kg daily for 21 days.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-met , Pirazóis , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Humanos , Animais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/síntese química , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Descoberta de Drogas , Pirazinas/farmacologia , Pirazinas/síntese química , Pirazinas/química , Pirazinas/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Camundongos , Mutação , Ratos
11.
Am J Respir Cell Mol Biol ; 48(6): 742-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23418343

RESUMO

Severe acute respiratory syndrome (SARS)-coronavirus (CoV) produces a devastating primary viral pneumonia with diffuse alveolar damage and a marked increase in circulating cytokines. One of the major cell types to be infected is the alveolar type II cell. However, the innate immune response of primary human alveolar epithelial cells infected with SARS-CoV has not been defined. Our objectives included developing a culture system permissive for SARS-CoV infection in primary human type II cells and defining their innate immune response. Culturing primary human alveolar type II cells at an air-liquid interface (A/L) improved their differentiation and greatly increased their susceptibility to infection, allowing us to define their primary interferon and chemokine responses. Viral antigens were detected in the cytoplasm of infected type II cells, electron micrographs demonstrated secretory vesicles filled with virions, virus RNA concentrations increased with time, and infectious virions were released by exocytosis from the apical surface of polarized type II cells. A marked increase was evident in the mRNA concentrations of interferon-ß and interferon-λ (IL-29) and in a large number of proinflammatory cytokines and chemokines. A surprising finding involved the variability of expression of angiotensin-converting enzyme-2, the SARS-CoV receptor, in type II cells from different donors. In conclusion, the cultivation of alveolar type II cells at an air-liquid interface provides primary cultures in which to study the pulmonary innate immune responses to infection with SARS-CoV, and to explore possible therapeutic approaches to modulating these innate immune responses.


Assuntos
Células Epiteliais/imunologia , Imunidade Inata , Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Enzima de Conversão de Angiotensina 2 , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Diferenciação Celular , Citoplasma/imunologia , Citoplasma/ultraestrutura , Citoplasma/virologia , Células Epiteliais/virologia , Humanos , Interferon beta/imunologia , Interferon beta/metabolismo , Interferons , Interleucinas/imunologia , Interleucinas/metabolismo , Peptidil Dipeptidase A/imunologia , Peptidil Dipeptidase A/metabolismo , Cultura Primária de Células , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/virologia , RNA Mensageiro/metabolismo , Receptores Virais/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/virologia , Fatores de Tempo , Liberação de Vírus
12.
J Biol Chem ; 287(43): 36229-38, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22915590

RESUMO

We have demonstrated previously that the cellular HuR protein binds U-rich elements in the 3' untranslated region (UTR) of Sindbis virus RNA and relocalizes from the nucleus to the cytoplasm upon Sindbis virus infection in 293T cells. In this study, we show that two alphaviruses, Ross River virus and Chikungunya virus, lack the conserved high-affinity U-rich HuR binding element in their 3' UTRs but still maintain the ability to interact with HuR with nanomolar affinities through alternative binding elements. The relocalization of HuR protein occurs during Sindbis infection of multiple mammalian cell types as well as during infections with three other alphaviruses. Interestingly, the relocalization of HuR is not a general cellular reaction to viral infection, as HuR protein remained largely nuclear during infections with dengue and measles virus. Relocalization of HuR in a Sindbis infection required viral gene expression, was independent of the presence of a high-affinity U-rich HuR binding site in the 3' UTR of the virus, and was associated with an alteration in the phosphorylation state of HuR. Sindbis virus-induced HuR relocalization was mechanistically distinct from the movement of HuR observed during a cellular stress response, as there was no accumulation of caspase-mediated HuR cleavage products. Collectively, these data indicate that virus-induced HuR relocalization to the cytoplasm is specific to alphavirus infections and is associated with distinct posttranslational modifications of this RNA-binding protein.


Assuntos
Infecções por Alphavirus/metabolismo , Alphavirus/metabolismo , Citoplasma/metabolismo , Proteínas ELAV/metabolismo , Processamento de Proteína Pós-Traducional , Regiões 3' não Traduzidas/fisiologia , Alphavirus/genética , Infecções por Alphavirus/genética , Animais , Caspases/genética , Caspases/metabolismo , Chlorocebus aethiops , Citoplasma/genética , Citoplasma/virologia , Proteínas ELAV/genética , Regulação Viral da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Fosforilação/genética , Transporte Proteico/genética , Proteólise , RNA Viral/genética , RNA Viral/metabolismo , Células Vero
13.
Am J Pathol ; 178(1): 32-40, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21224040

RESUMO

Chikungunya virus (CHIKV), an emerging mosquito-borne Alphavirus, causes debilitating rheumatic disease in humans that can last for weeks to months. Starting in 2004, a CHIKV outbreak in the Indian Ocean region affected millions of people, and infected travelers introduced CHIKV to new regions. The pathogenesis of CHIKV is poorly understood, and no approved vaccines or specific therapies exist. A major challenge to the study of CHIKV disease is the lack of a small animal model that recapitulates the major outcomes of human infection. In this study, the pathogenesis of CHIKV in C57BL/6J mice was investigated using biological and molecular clones of CHIKV isolated from human serum (CHIKV SL15649). After 14-day-old mice were inoculated with CHIKV SL15649 in the footpad, they displayed reduced weight gain and swelling of the inoculated limb. Histologic analysis of hind limb sections revealed severe necrotizing myositis, mixed inflammatory cell arthritis, chronic active tenosynovitis, and multifocal vasculitis. Interestingly, these disease signs and viral RNA persisted in musculoskeletal tissues for at least 3 weeks after inoculation. This work demonstrates the development of a mouse model of CHIKV infection with clinical manifestations and histopathologic findings that are consistent with the disease signs of CHIKV-infected humans, providing a useful tool for studying viral and host factors that drive CHIKV pathogenesis and for evaluating potential therapeutics against this emerging viral disease.


Assuntos
Artrite Reumatoide/virologia , Vírus Chikungunya , Modelos Animais de Doenças , Camundongos , Miosite/virologia , Tenossinovite/virologia , Infecções por Alphavirus/patologia , Animais , Artrite Reumatoide/patologia , Febre de Chikungunya , Membro Posterior/patologia , Humanos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Miosite/patologia , Tenossinovite/patologia
14.
Virology ; 569: 13-28, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35219218

RESUMO

Emerging mutations in the SARS-CoV-2 genome pose a challenge for vaccine development and antiviral therapy. The antiviral efficacy of Azadirachta indica bark extract (NBE) was assessed against SARS-CoV-2 and m-CoV-RSA59 infection. Effects of in vivo intranasal or oral NBE administration on viral load, inflammatory response, and histopathological changes were assessed in m-CoV-RSA59-infection. NBE administered inhibits SARS-CoV-2 and m-CoV-RSA59 infection and replication in vitro, reducing Envelope and Nucleocapsid gene expression. NBE ameliorates neuroinflammation and hepatitis in vivo by restricting viral replication and spread. Isolated fractions of NBE enriched in Nimbin isomers shows potent inhibition of m-CoV-RSA59 infection in vitro. In silico studies revealed that NBE could target Spike and RdRp of m-CoV and SARS-CoV-2 with high affinity. NBE has a triterpenoids origin that may allow them to competitively target panoply of viral proteins to inhibit mouse and different strains of human coronavirus infections, suggesting its potential as an antiviral against pan-ß-Coronaviruses.


Assuntos
Azadirachta , Tratamento Farmacológico da COVID-19 , Animais , Antivirais/farmacologia , Limoninas , Camundongos , Casca de Planta , Extratos Vegetais/farmacologia , SARS-CoV-2 , Replicação Viral
15.
J Virol ; 82(2): 755-63, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18003729

RESUMO

The MHV-JHM strain of the murine coronavirus mouse hepatitis virus is much more neurovirulent than the MHV-A59 strain, although both strains use murine CEACAM1a (mCEACAM1a) as the receptor to infect murine cells. We previously showed that Ceacam1a(-/-) mice are completely resistant to MHV-A59 infection (E. Hemmila et al., J. Virol. 78:10156-10165, 2004). In vitro, MHV-JHM, but not MHV-A59, can spread from infected murine cells to cells that lack mCEACAM1a, a phenomenon called receptor-independent spread. To determine whether MHV-JHM could infect and spread in the brain independent of mCEACAM1a, we inoculated Ceacam1a(-/-) mice. Although Ceacam1a(-/-) mice were completely resistant to i.c. inoculation with 10(6) PFU of recombinant wild-type MHV-A59 (RA59) virus, these mice were killed by recombinant MHV-JHM (RJHM) and a chimeric virus containing the spike of MHV-JHM in the MHV-A59 genome (SJHM/RA59). Immunohistochemistry showed that RJHM and SJHM/RA59 infected all neural cell types and induced severe microgliosis in both Ceacam1a(-/-) and wild-type mice. For RJHM, the 50% lethal dose (LD(50)) is <10(1.3) in wild-type mice and 10(3.1) in Ceacam1a(-/-) mice. For SJHM/RA59, the LD(50) is <10(1.3) in wild-type mice and 10(3.6) in Ceacam1a(-/-) mice. This study shows that infection and spread of MHV-JHM in the brain are dependent upon the viral spike glycoprotein. RJHM can initiate infection in the brains of Ceacam1a(-/-) mice, but expression of mCEACAM1a increases susceptibility to infection. The spread of infection in the brain is mCEACAM1a independent. Thus, the ability of the MHV-JHM spike to mediate mCEACAM1a-independent spread in the brain is likely an important factor in the severe neurovirulence of MHV-JHM in wild-type mice.


Assuntos
Antígeno Carcinoembrionário/genética , Sistema Nervoso Central/virologia , Infecções por Coronavirus/virologia , Glicoproteínas de Membrana/fisiologia , Vírus da Hepatite Murina/crescimento & desenvolvimento , Proteínas do Envelope Viral/fisiologia , Internalização do Vírus , Animais , Encéfalo/patologia , Encéfalo/virologia , Deleção de Genes , Dose Letal Mediana , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vírus da Hepatite Murina/fisiologia , Glicoproteína da Espícula de Coronavírus , Análise de Sobrevida , Proteínas do Envelope Viral/genética , Fatores de Virulência/genética , Fatores de Virulência/fisiologia
16.
Immunohorizons ; 3(3): 94-109, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-31356152

RESUMO

IL-10 is a potent immunomodulatory cytokine produced by multiple cell types to restrain immune activation. Many herpesviruses use the IL-10 pathway to facilitate infection, but how endogenous IL-10 is regulated during primary infection in vivo remains poorly characterized. In this study, we infected mice with murine gammaherpesvirus 68 (γHV68) and analyzed the production and genetic contribution of IL-10 by mass cytometry (cytometry by time-of-flight) analysis. γHV68 infection elicited a breadth of effector CD4 T cells in the lungs of acutely infected mice, including a highly activated effector subset that coexpressed IFN-γ, TNF-α, and IL-10. By using IL-10 GFP transcriptional reporter mice, we identified that IL-10 was primarily expressed within CD4 T cells during acute infection in the lungs. IL10gfp-expressing CD4 T cells were highly proliferative and characterized by the expression of multiple coinhibitory receptors, including PD-1 and LAG-3. When we analyzed acute γHV68 infection of IL-10-deficient mice, we found that IL-10 limits the frequency of both myeloid and effector CD4 T cell subsets in the infected lung, with minimal changes at a distant mucosal site. These data emphasize the unique insights that high-dimensional analysis can afford in investigating antiviral immunity and provide new insights into the breadth, phenotype, and function of IL-10-expressing effector CD4 T cells during acute virus infection.


Assuntos
Gammaherpesvirinae/imunologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/metabolismo , Interações Hospedeiro-Patógeno , Imunomodulação , Interleucina-10/metabolismo , Animais , Biomarcadores , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Genes Reporter , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno/imunologia , Imunofenotipagem , Interleucina-10/genética , Camundongos , Camundongos Transgênicos
17.
BMC Immunol ; 7: 18, 2006 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-16916450

RESUMO

BACKGROUND: Deer mice (Peromyscus maniculatus) are the most common mammals in North America and are reservoirs for several zoonotic agents, including Sin Nombre virus (SNV), the principal etiologic agent of hantavirus cardiopulmonary syndrome (HCPS) in North America. Unlike human HCPS patients, SNV-infected deer mice show no overt pathological symptoms, despite the presence of virus in the lungs. A neutralizing IgG antibody response occurs, but the virus establishes a persistent infection. Limitations of detailed analysis of deer mouse immune responses to SNV are the lack of reagents and methods for evaluating such responses. RESULTS: We developed real-time PCR-based detection assays for several immune-related transcription factor and cytokine genes from deer mice that permit the profiling of CD4+ helper T cells, including markers of Th1 cells (T-bet, STAT4, IFNgamma, TNF, LT), Th2 cells (GATA-3, STAT6, IL-4, IL-5) and regulatory T cells (Fox-p3, IL-10, TGFbeta1). These assays compare the expression of in vitro antigen-stimulated and unstimulated T cells from individual deer mice. CONCLUSION: We developed molecular methods for profiling immune gene expression in deer mice, including a multiplexed real-time PCR assay for assessing expression of several cytokine and transcription factor genes. These assays should be useful for characterizing the immune responses of experimentally- and naturally-infected deer mice.


Assuntos
Perfilação da Expressão Gênica , Peromyscus/genética , Peromyscus/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th1/metabolismo , Células Th2/metabolismo , Animais , Proliferação de Células , Separação Celular , Células Cultivadas , Citocinas/genética , Subpopulações de Linfócitos T/citologia , Células Th1/citologia , Células Th2/citologia , Fatores de Transcrição/genética
18.
mSphere ; 1(2)2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27110595

RESUMO

Recent intense investigations have uncovered important functions for a diverse array of novel noncoding RNA (ncRNA) species, including microRNAs (miRNAs) and long noncoding RNAs. Not surprisingly, viruses from multiple families have evolved to encode their own regulatory RNAs; however, the specific in vivo functions of these ncRNAs are largely unknown. The human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are highly ubiquitous pathogens that are associated with the development of a wide range of malignancies, including Burkitt's lymphoma, Hodgkin's lymphoma, nasopharyngeal carcinoma, and Kaposi's sarcoma. Like EBV and KSHV, murine gammaherpesvirus 68 (MHV68) establishes lifelong latency in B cells and is associated with lymphoproliferative disease and lymphoma. Similar to the EBV-encoded small RNA (EBER)-1 and -2, MHV68 encodes eight 200- to 250-nucleotide polymerase III-transcribed ncRNAs called TMERs (tRNA-miRNA-encoded RNAs), which are highly expressed in latently infected cells and lymphoproliferative disease. To define the in vivo contribution of TMERs to MHV68 biology, we generated a panel of individual TMER mutant viruses. Through comprehensive in vivo analyses, we identified TMER4 as a key mediator of virus dissemination. The TMER4 mutant virus replicated normally in lungs and spread with normal kinetics and distribution to lung-draining lymph nodes, but it was significantly attenuated for infection of circulating blood cells and for latency establishment at peripheral sites. Notably, TMER4 stem-loops but not miRNAs were essential for wild-type TMER4 activity. Thus, these findings revealed a crucial miRNA-independent function of the TMER4 ncRNA in MHV68 hematogenous dissemination and latency establishment. IMPORTANCE: Noncoding RNAs (ncRNAs) represent an intriguing and diverse class of molecules that are now recognized for their participation in a wide array of cellular processes. Viruses from multiple families have evolved to encode their own such regulatory RNAs; however, the specific in vivo functions of these ncRNAs are largely unknown. Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are ubiquitous human pathogens that are associated with the development of numerous malignancies. Like EBV and KSHV, murine gammaherpesvirus 68 (MHV68) establishes lifelong latency in B cells and is associated with lymphomagenesis. The work described here reveals that the MHV68 ncRNA TMER4 acts at a critical bottleneck in local lymph nodes to facilitate hematogenous dissemination of the virus and establishment of latency at peripheral sites.

19.
mBio ; 6(1): e01670-14, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25691585

RESUMO

UNLABELLED: Many viruses express noncoding RNAs (ncRNAs). The gammaherpesviruses (γHVs), including Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, and murine γHV68, each contain multiple ncRNA genes, including microRNAs (miRNAs). While these ncRNAs can regulate multiple host and viral processes in vitro, the genetic contribution of these RNAs to infection and pathogenesis remains largely unknown. To study the functional contribution of these RNAs to γHV infection, we have used γHV68, a small-animal model of γHV pathogenesis. γHV68 encodes eight small hybrid ncRNAs that contain both tRNA-like elements and functional miRNAs. These genes are transcribed by RNA polymerase III and are referred to as the γHV68 TMERs (tRNA-miRNA-encoded RNAs). To determine the total concerted genetic contribution of these ncRNAs to γHV acute infection and pathogenesis, we generated and characterized a recombinant γHV68 strain devoid of all eight TMERs. TMER-deficient γHV68 has wild-type levels of lytic replication in vitro and normal establishment of latency in B cells early following acute infection in vivo. In contrast, during acute infection of immunodeficient mice, TMER-deficient γHV68 has reduced virulence in a model of viral pneumonia, despite having an enhanced frequency of virus-infected cells. Strikingly, expression of a single viral tRNA-like molecule, in the absence of all other virus-encoded TMERs and miRNAs, reverses both attenuation in virulence and enhanced frequency of infected cells. These data show that γHV ncRNAs play critical roles in acute infection and virulence in immunocompromised hosts and identify these RNAs as a new potential target to modulate γHV-induced infection and pathogenesis. IMPORTANCE: The gammaherpesviruses (γHVs) are a subfamily of viruses associated with chronic inflammatory diseases and cancer, particularly in immunocompromised individuals. These viruses uniformly encode multiple types of noncoding RNAs (ncRNAs) that are not translated into proteins. It remains unclear how virus-expressed ncRNAs influence the course and outcome of infection in vivo. Here, we generated a mouse γHV that lacks the expression of multiple ncRNAs. Notably, this mutant virus is critically impaired in the ability to cause disease in immunocompromised hosts yet shows a paradoxical increase in infected cells early during infection in these hosts. While the original mouse virus encodes multiple ncRNAs, the expression of a single domain of one ncRNA can partially reverse the defects of the mutant virus. These studies demonstrate that γHV ncRNAs can directly contribute to virus-induced disease in vivo and that these RNAs may be multifunctional, allowing the opportunity to specifically interfere with different functional domains of these RNAs.


Assuntos
Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , RNA não Traduzido/metabolismo , Rhadinovirus/genética , Rhadinovirus/patogenicidade , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Fibroblastos/fisiologia , Fibroblastos/virologia , Deleção de Genes , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , RNA não Traduzido/genética , Virulência , Fatores de Virulência/genética
20.
mBio ; 5(3): e00981-14, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24865551

RESUMO

UNLABELLED: Gammaherpesviruses, including Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV, or HHV-8), and murine gammaherpesvirus 68 (MHV68, γHV68, or MuHV-4), are B cell-tropic pathogens that each encode at least 12 microRNAs (miRNAs). It is predicted that these regulatory RNAs facilitate infection by suppressing host target genes involved in a wide range of key cellular pathways. However, the precise contribution that gammaherpesvirus miRNAs make to viral life cycle and pathogenesis in vivo is unknown. MHV68 infection of mice provides a highly useful system to dissect the function of specific viral elements in the context of both asymptomatic infection and disease. Here, we report (i) analysis of in vitro and in vivo MHV68 miRNA expression, (ii) generation of an MHV68 miRNA mutant with reduced expression of all 14 pre-miRNA stem-loops, and (iii) comprehensive phenotypic characterization of the miRNA mutant virus in vivo. The profile of MHV68 miRNAs detected in infected cell lines varied with cell type and did not fully recapitulate the profile from cells latently infected in vivo. The miRNA mutant virus, MHV68.Zt6, underwent normal lytic replication in vitro and in vivo, demonstrating that the MHV68 miRNAs are dispensable for acute replication. During chronic infection, MHV68.Zt6 was attenuated for latency establishment, including a specific defect in memory B cells. Finally, MHV68.Zt6 displayed a striking attenuation in the development of lethal pneumonia in mice deficient in IFN-γ. These data indicate that the MHV68 miRNAs may facilitate virus-driven maturation of infected B cells and implicate the miRNAs as a critical determinant of gammaherpesvirus-associated disease. IMPORTANCE: Gammaherpesviruses such as EBV and KSHV are widespread pathogens that establish lifelong infections and are associated with the development of numerous types of diseases, including cancer. Gammaherpesviruses encode many small noncoding RNAs called microRNAs (miRNAs). It is predicted that gammaherpesvirus miRNAs facilitate infection and disease by suppressing host target transcripts involved in a wide range of key cellular pathways; however, the precise contribution that these regulatory RNAs make to in vivo virus infection and pathogenesis is unknown. Here, we generated a mutated form of murine gammaherpesvirus (MHV68) to dissect the function of gammaherpesvirus miRNAs in vivo. We demonstrate that the MHV68 miRNAs were dispensable for short-term virus replication but were important for establishment of lifelong infection in the key virus reservoir of memory B cells. Moreover, the MHV68 miRNAs were essential for the development of virus-associated pneumonia, implicating them as a critical component of gammaherpesvirus-associated disease.


Assuntos
Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/virologia , MicroRNAs/genética , RNA Viral , Latência Viral/genética , Animais , Linfócitos B/virologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Regulação Viral da Expressão Gênica , Ordem dos Genes , Genoma Viral , Interferon gama/deficiência , Camundongos , Camundongos Knockout , MicroRNAs/química , Mutação , Conformação de Ácido Nucleico , Pneumonia Viral/genética , Pneumonia Viral/mortalidade , Pneumonia Viral/virologia , Ativação Viral , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA