Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 136(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546833

RESUMO

The temporal order of DNA replication along the chromosomes is thought to reflect the transcriptional competence of the genome. During differentiation of mouse 3T3-L1 cells into adipocytes, cells undergo one or two rounds of cell division called mitotic clonal expansion (MCE). MCE is an essential step for adipogenesis; however, little is known about the regulation of DNA replication during this period. Here, we performed genome-wide mapping of replication timing (RT) in mouse 3T3-L1 cells before and during MCE, and identified a number of chromosomal regions shifting toward either earlier or later replication through two rounds of replication. These RT changes were confirmed in individual cells by single-cell DNA-replication sequencing. Coordinate changes between a shift toward earlier replication and transcriptional activation of adipogenesis-associated genes were observed. RT changes occurred before the full expression of these genes, indicating that RT reorganization might contribute to the mature adipocyte phenotype. To support this, cells undergoing two rounds of DNA replication during MCE had a higher potential to differentiate into lipid droplet-accumulating adipocytes, compared with cells undergoing a single round of DNA replication and non-replicating cells.


Assuntos
Adipogenia , Mitose , Animais , Camundongos , Adipogenia/genética , Mitose/genética , Diferenciação Celular/genética , Replicação do DNA/genética , Expressão Gênica , Células 3T3-L1
2.
Molecules ; 28(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38138517

RESUMO

Obesity is an emerging global health issue with an increasing risk of disease linked to lifestyle choices. Previously, we reported that the hexane extract of Citrus sphaerocarpa (CSHE) suppressed lipid accumulation in differentiated 3T3-L1 adipocytes. In this study, we conducted in vivo experiments to assess whether CSHE suppressed obesity in zebrafish and mouse models. We administered 10 and 20 µg/mL CSHE to obese zebrafish juveniles. CSHE significantly inhibited visceral fat accumulation compared to untreated obese fish. Moreover, the oral administration (100 µg/g body weight/day) of CSHE to high-fat-diet-induced obese mice significantly reduced their body weight, visceral fat volume, and hepatic lipid accumulation. The expression analyses of key regulatory genes involved in lipid metabolism revealed that CSHE upregulated the mRNA expression of lipolysis-related genes in the mouse liver (Pparα and Acox1) and downregulated lipogenesis-related gene (Fasn) expression in epididymal white adipose tissue (eWAT). Fluorescence immunostaining demonstrated the CSHE-mediated enhanced phosphorylation of AKT, AMPK, ACC, and FoxO1, which are crucial factors regulating adipogenesis. CSHE-treated differentiated 3T3L1 adipocytes also exhibited an increased phosphorylation of ACC. Therefore, we propose that CSHE suppresses adipogenesis and enhances lipolysis by regulating the PI3K/AKT/FoxO1 and AMPK/ACC signaling pathways. These findings suggested that CSHE is a promising novel preventive and therapeutic agent for managing obesity.


Assuntos
Fármacos Antiobesidade , Citrus , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos Obesos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Peixe-Zebra/metabolismo , Adiposidade , Citrus/metabolismo , Fármacos Antiobesidade/farmacologia , Hexanos/farmacologia , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Adipogenia , Peso Corporal , Transdução de Sinais , Lipídeos/farmacologia , Dieta , Dieta Hiperlipídica/efeitos adversos , Células 3T3-L1 , Camundongos Endogâmicos C57BL
3.
Cytogenet Genome Res ; 161(8-9): 437-444, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34818230

RESUMO

E/L Repli-seq is a powerful tool for detecting cell type-specific replication landscapes in mammalian cells, but its potential to monitor DNA replication under replication stress awaits better understanding. Here, we used E/L Repli-seq to examine the temporal order of DNA replication in human retinal pigment epithelium cells treated with the topoisomerase I inhibitor camptothecin. We found that the replication profiles by E/L Repli-seq exhibit characteristic patterns after replication-stress induction, including the loss of specific initiation zones within individual early replication timing domains. We also observed global disappearance of the replication timing domain structures in the profiles, which can be explained by checkpoint-dependent suppression of replication initiation. Thus, our results demonstrate the effectiveness of E/L Repli-seq at identifying cells with replication-stress-induced altered DNA replication programs.


Assuntos
Camptotecina/farmacologia , Replicação do DNA/efeitos dos fármacos , Período de Replicação do DNA/efeitos dos fármacos , Humanos , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Inibidores da Topoisomerase I/farmacologia
4.
J Biol Chem ; 292(31): 13008-13021, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28646110

RESUMO

The protein mini-chromosome maintenance 10 (Mcm10) was originally identified as an essential yeast protein in the maintenance of mini-chromosome plasmids. Subsequently, Mcm10 has been shown to be required for both initiation and elongation during chromosomal DNA replication. However, it is not fully understood how the multiple functions of Mcm10 are coordinated or how Mcm10 interacts with other factors at replication forks. Here, we identified and characterized the Mcm2-7-interacting domain in human Mcm10. The interaction with Mcm2-7 required the Mcm10 domain that contained amino acids 530-655, which overlapped with the domain required for the stable retention of Mcm10 on chromatin. Expression of truncated Mcm10 in HeLa cells depleted of endogenous Mcm10 via siRNA revealed that the Mcm10 conserved domain (amino acids 200-482) is essential for DNA replication, whereas both the conserved and the Mcm2-7-binding domains were required for its full activity. Mcm10 depletion reduced the initiation frequency of DNA replication and interfered with chromatin loading of replication protein A, DNA polymerase (Pol) α, and proliferating cell nuclear antigen, whereas the chromatin loading of Cdc45 and Pol ϵ was unaffected. These results suggest that human Mcm10 is bound to chromatin through the interaction with Mcm2-7 and is primarily involved in the initiation of DNA replication after loading of Cdc45 and Pol ϵ.


Assuntos
Cromatina/metabolismo , Replicação do DNA , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Componente 7 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Origem de Replicação , Transporte Ativo do Núcleo Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Componente 2 do Complexo de Manutenção de Minicromossomo/química , Componente 7 do Complexo de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/antagonistas & inibidores , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/genética , Mutagênese Sítio-Dirigida , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Estabilidade Proteica , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Mutação Silenciosa , Homologia Estrutural de Proteína
5.
Biosci Biotechnol Biochem ; 82(12): 2098-2100, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30198402

RESUMO

Here, we show that semiconductor-based sequencing technology can be used to map mammalian replication domains, chromosomal units with similar DNA replication timing. Replicating DNA purified from mammalian cells was successfully sequenced by the Ion Torrent platform. The resultant replication domain map of mouse embryonic stem cells is comparable to those obtained by the conventional microarray-based method.


Assuntos
Replicação do DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Semicondutores , Animais , Células-Tronco Embrionárias/citologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Camundongos
6.
Biosci Biotechnol Biochem ; 80(4): 779-85, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26967638

RESUMO

Osteoporosis is a debilitating disease caused by decreased bone density. Compounds with anti-osteoclastic activity, such as bisphosphonates, may help in the prevention and treatment of osteoporosis. Herein, we determined the inhibitory effects of ginger hexane extract (GHE) on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in RAW264.7 cells. The results showed that GHE (1) suppressed osteoclast differentiation and the formation of actin rings; (2) inhibited the expression of Nfatc1, a master transcriptional factor for osteoclast differentiation, in a dose-dependent manner (10-20 µg/mL); and (3) inhibited other osteoclastogenesis-related genes, such as Oscar, Dc-stamp, Trap, and Mmp9. These findings suggest that GHE may be used to prevent and treat osteoporosis by inhibiting osteoclast differentiation.


Assuntos
Diferenciação Celular/fisiologia , Hexanos/química , Osteoclastos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ligante RANK/fisiologia , Zingiber officinale/química , Animais , Linhagem Celular , Camundongos , Osteoclastos/citologia , Extratos Vegetais/química
7.
Biosci Biotechnol Biochem ; 80(5): 945-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26923175

RESUMO

We analyzed DNA replication in early zebrafish embryos. The replicating DNA of whole embryos was labeled with the thymidine analog 5-ethynyl-2'-deoxyuridine (EdU), and spatial regulation of replication sites was visualized in single embryo-derived cells. The results unveiled uncharacterized replication dynamics during zebrafish early embryogenesis.


Assuntos
Replicação do DNA , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Peixe-Zebra/embriologia , Animais , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Embrião não Mamífero/ultraestrutura , Microscopia de Fluorescência , Coloração e Rotulagem , Peixe-Zebra/genética
8.
Plant Cell Physiol ; 56(4): 663-73, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25527828

RESUMO

Pollination is an important early step in sexual plant reproduction. In Arabidopsis thaliana, sequential pollination events, from pollen adhesion onto the stigma surface to pollen tube germination and elongation, occur on the stigmatic papilla cells. Following successful completion of these events, the pollen tube penetrates the stigma and finally fertilizes a female gametophyte. The pollination events are thought to be initiated and regulated by interactions between papilla cells and pollen. Here, we report the characterization of gene expression profiles of unpollinated (UP), compatible pollinated (CP) and incompatible pollinated (IP) papilla cells in A. thaliana. Based on cell type-specific transcriptome analysis from a combination of laser microdissection and RNA sequencing, 15,475, 17,360 and 16,918 genes were identified as expressed in UP, CP and IP papilla cells, respectively, and, of these, 14,392 genes were present in all three data sets. Differentially expressed gene (DEG) analyses identified 147 and 71 genes up-regulated in CP and IP papilla cells, respectively, and 115 and 46 genes down-regulated. Gene Ontology and metabolic pathway analyses revealed that papilla cells play an active role as the female reproductive component in pollination, particularly in information exchange, signal transduction, internal physiological changes and external morphological modification. This study provides fundamental information on the molecular mechanisms involved in pollination in papilla cells, furthering our understanding of the reproductive role of papilla cells.


Assuntos
Arabidopsis/citologia , Arabidopsis/genética , Flores/citologia , Flores/genética , Polinização/genética , Transcrição Gênica , Arabidopsis/fisiologia , Vias Biossintéticas/genética , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Redes e Vias Metabólicas/genética , Análise de Sequência de RNA , Transcriptoma
9.
Mol Microbiol ; 90(3): 584-96, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23998701

RESUMO

The replisome catalyses DNA synthesis at a DNA replication fork. The molecular behaviour of the individual replisomes, and therefore the dynamics of replication fork movements, in growing Escherichia coli cells remains unknown. DNA combing enables a single-molecule approach to measuring the speed of replication fork progression in cells pulse-labelled with thymidine analogues. We constructed a new thymidine-requiring strain, eCOMB (E. coli for combing), that rapidly and sufficiently incorporates the analogues into newly synthesized DNA chains for the DNA-combing method. In combing experiments with eCOMB, we found the speed of most replication forks in the cells to be within the narrow range of 550-750 nt s(-1) and the average speed to be 653 ± 9 nt s(-1) (± SEM). We also found the average speed of the replication fork to be only 264 ± 9 nt s(-1) in a dnaE173-eCOMB strain producing a mutant-type of the replicative DNA polymerase III (Pol III) with a chain elongation rate (300 nt s(-1) ) much lower than that of the wild-type Pol III (900 nt s(-1) ). This indicates that the speed of chain elongation by Pol III is a major determinant of replication fork speed in E. coli cells.


Assuntos
DNA Polimerase III/metabolismo , Replicação do DNA , DNA Bacteriano/biossíntese , Escherichia coli/crescimento & desenvolvimento , Bromodesoxiuridina , Cromossomos Bacterianos , DNA Polimerase III/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação , Timidina/análogos & derivados
10.
J Biol Chem ; 286(35): 30504-30512, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21757688

RESUMO

Ordered nucleosome disassembly and reassembly are required for eukaryotic DNA replication. The facilitates chromatin transcription (FACT) complex, a histone chaperone comprising Spt16 and SSRP1, is involved in DNA replication as well as transcription. FACT associates with the MCM helicase, which is involved in DNA replication initiation and elongation. Although the FACT-MCM complex is reported to regulate DNA replication initiation, its functional role in DNA replication elongation remains elusive. To elucidate the functional role of FACT in replication fork progression during DNA elongation in the cells, we generated and analyzed conditional SSRP1 gene knock-out chicken (Gallus gallus) DT40 cells. SSRP1-depleted cells ceased to grow and exhibited a delay in S-phase cell cycle progression, although SSRP1 depletion did not affect the level of chromatin-bound DNA polymerase α or nucleosome reassembly on daughter strands. The tracking length of newly synthesized DNA, but not origin firing, was reduced in SSRP1-depleted cells, suggesting that the S-phase cell cycle delay is mainly due to the inhibition of replication fork progression rather than to defects in the initiation of DNA replication in these cells. We discuss the mechanisms of how FACT promotes replication fork progression in the cells.


Assuntos
Cromatina/química , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Chaperonas de Histonas/química , Transcrição Gênica , Fatores de Elongação da Transcrição/metabolismo , Animais , Ciclo Celular , Galinhas , Epigênese Genética , Citometria de Fluxo/métodos , Histonas/química , Humanos , Chaperonas Moleculares/metabolismo , Nucleossomos/metabolismo , Fase S
11.
Proc Natl Acad Sci U S A ; 106(9): 3184-9, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19221029

RESUMO

Somatic mammalian cells possess well-established S-phase programs with specific regions of the genome replicated at precise times. The ATR-Chk1 pathway plays a central role in these programs, but the mechanism for how Chk1 regulates origin firing remains unknown. We demonstrate here the essential role of cyclin A2-Cdk1 in the regulation of late origin firing. Activity of cyclin A2-Cdk1 was hardly detected at the onset of S phase, but it was obvious at middle to late S phase under unperturbed condition. Chk1 depletion resulted in increased expression of Cdc25A, subsequent hyperactivation of cyclin A2-Cdk1, and abnormal replication at early S phase. Hence, the ectopic expression of cyclin A2-Cdk1AF (constitutively active mutant) fusion constructs resulted in abnormal origin firing, causing the premature appearance of DNA replication at late origins at early S phase. Intriguingly, inactivation of Cdk1 in temperature-sensitive Cdk1 mutant cell lines (FT210) resulted in a prolonged S phase and inefficient activation of late origin firing even at late S phase. Our results thus suggest that cyclin A2-Cdk1 is a key regulator of S-phase programs.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclina A/metabolismo , Animais , Proteína Quinase CDC2/deficiência , Proteína Quinase CDC2/genética , Linhagem Celular , Ciclina A/genética , Ativação Enzimática , Humanos , Cinética , Camundongos , Camundongos Knockout , Mutação/efeitos dos fármacos , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fase S
12.
Exp Cell Res ; 316(17): 2731-46, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20599948

RESUMO

In mammals, DNA methylation is an important epigenetic mark that is associated with gene silencing, particularly in constitutive heterochromatin. However, the effect of DNA methylation on other epigenetic properties of chromatin is controversial. In this study, we show that inhibition of DNA methylation in mouse fibroblast cells affects histone modification and the subnuclear localization of histone H3.3 in a cell cycle-dependent manner. Using a DNA methyltransferase (Dnmt) inhibitor 5-aza-2'-deoxycytidine (5-aza-dC), we found that reduced levels of DNA methylation were associated with the activation of transcription from centromeric and pericentromeric satellite repeats. The de-repressed pericentromeric chromatin was enriched in euchromatic histone modifications such as acetylation of histone H4, and di- and tri-methylation of lysine 4 on histone H3. Spatio-temporal analysis showed that the accumulation of these euchromatic histone modifications occurred during the second S phase following 5-aza-dC treatment, corresponding precisely with a shift in replication timing of the pericentromeric satellite repeats from middle/late S phase to early S phase. Moreover, we found that histone H3.3 was deposited on the pericentromeric heterochromatin prior to the accumulation of the euchromatic histone modifications. These results suggest that DNA CpG methylation is essential for the proper organization of pericentromeric heterochromatin in differentiated mouse cells.


Assuntos
Ciclo Celular , Metilação de DNA/fisiologia , Eucromatina/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Animais , Centrômero , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Epigênese Genética , Fibroblastos/citologia , Camundongos
13.
Cells ; 10(2)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572832

RESUMO

Multiple epigenetic pathways underlie the temporal order of DNA replication (replication timing) in the contexts of development and disease. DNA methylation by DNA methyltransferases (Dnmts) and downstream chromatin reorganization and transcriptional changes are thought to impact DNA replication, yet this remains to be comprehensively tested. Using cell-based and genome-wide approaches to measure replication timing, we identified a number of genomic regions undergoing subtle but reproducible replication timing changes in various Dnmt-mutant mouse embryonic stem (ES) cell lines that included a cell line with a drug-inducible Dnmt3a2 expression system. Replication timing within pericentromeric heterochromatin (PH) was shown to be correlated with redistribution of H3K27me3 induced by DNA hypomethylation: Later replicating PH coincided with H3K27me3-enriched regions. In contrast, this relationship with H3K27me3 was not evident within chromosomal arm regions undergoing either early-to-late (EtoL) or late-to-early (LtoE) switching of replication timing upon loss of the Dnmts. Interestingly, Dnmt-sensitive transcriptional up- and downregulation frequently coincided with earlier and later shifts in replication timing of the chromosomal arm regions, respectively. Our study revealed the previously unrecognized complex and diverse effects of the Dnmts loss on the mammalian DNA replication landscape.


Assuntos
Período de Replicação do DNA , DNA/metabolismo , Mamíferos/metabolismo , Metiltransferases/metabolismo , Animais , Cromossomos de Mamíferos/metabolismo , Metilação de DNA/genética , Período de Replicação do DNA/genética , Genoma , Heterocromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Metilação , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas/metabolismo , Transcrição Gênica
14.
J Biol Chem ; 284(45): 30798-806, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-19759014

RESUMO

The majority of CDF/ZnT zinc transporters form homo-oligomers. However, ZnT5, ZnT6, and their orthologues form hetero-oligomers in the early secretory pathway where they load zinc onto zinc-requiring enzymes and maintain secretory pathway functions. The details of this hetero-oligomerization remain to be elucidated, and much more is known about homo-oligomerization that occurs in other CDF/ZnT family proteins. Here, we addressed this issue using co-immunoprecipitation experiments, mutagenesis, and chimera studies of hZnT5 and hZnT6 in chicken DT40 cells deficient in ZnT5, ZnT6, and ZnT7 proteins. We found that hZnT5 and hZnT6 combine to form heterodimers but do not form complexes larger than heterodimers. Mutagenesis of hZnT6 indicated that the sites present in transmembrane domains II and V in which many CDF/ZnT proteins have conserved hydrophilic amino acid residues are not involved in zinc binding of hZnT6, although they are required for zinc transport in other CDF/ZnT family homo-oligomers. We also found that the long N-terminal half of hZnT5 is not necessary for its functional interaction with hZnT6, whereas the cytosolic C-terminal tail of hZnT5 is important in determining hZnT6 as a partner molecule for heterodimer formation. In DT40 cells, cZnT5 variant lacking the N-terminal half was endogenously induced during periods of endoplasmic reticulum stress and so seemed to function to supply zinc to zinc-requiring enzymes under these conditions. The results outlined here provide new information about the mechanism of action through heterodimerization of CDF/ZnT proteins that function in the early secretory pathway.


Assuntos
Proteínas de Transporte de Cátions/química , Via Secretória , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular , Galinhas , Dimerização , Humanos , Dados de Sequência Molecular , Ligação Proteica , Alinhamento de Sequência
15.
Biochem Biophys Res Commun ; 398(4): 723-9, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20621060

RESUMO

We have recently found that 3T3-L1 adipocytes secrete microvesicles, known as adipocyte-derived microvesicles (ADMs), with angiogenic activity. In this study, we found that ADMs contain RNA without typical 28S and 18S ribosomal RNA inside the vesicles. Microarray analysis revealed that ADMs contain approximately 7000 mRNAs and 140 microRNAs. Most of transcripts for adipocyte-specific and dominant genes were contained in the ADMs, and their abundance was mostly correlated with that in the donor cells. Abundance of adipocyte-related microRNAs was also mostly correlated with that in the donor cells. ADMs mediated transport of adiponectin and resistin gene transcripts into RAW264.7 macrophages. Moreover, adipocyte-specific gene transcripts such as adiponectin, resistin, and PPARgamma2 were found in microvesicles isolated from rat serum. Thus, ADM might play a role as a novel intercellular communication tool by transporting RNA in paracrine and possibly endocrine manners.


Assuntos
Adipócitos/metabolismo , Circulação Sanguínea , Macrófagos/metabolismo , RNA Mensageiro/sangue , Vesículas Secretórias/metabolismo , Células 3T3-L1 , Adiponectina/sangue , Adiponectina/genética , Animais , Transporte Biológico , Masculino , Camundongos , PPAR gama/sangue , PPAR gama/genética , Comunicação Parácrina , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos BB , Resistina/sangue , Resistina/genética , Transcrição Gênica
16.
Nat Protoc ; 15(12): 4058-4100, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33230331

RESUMO

Replication timing (RT) domains are stable units of chromosome structure that are regulated in the context of development and disease. Conventional genome-wide RT mapping methods require many S-phase cells for either the effective enrichment of replicating DNA through bromodeoxyuridine (BrdU) immunoprecipitation or the determination of copy-number differences during S-phase, which precludes their application to non-abundant cell types and single cells. Here, we provide a simple, cost-effective, and robust protocol for single-cell DNA replication sequencing (scRepli-seq). The scRepli-seq methodology relies on whole-genome amplification (WGA) of genomic DNA (gDNA) from single S-phase cells and next-generation sequencing (NGS)-based determination of copy-number differences that arise between replicated and unreplicated DNA. Haplotype-resolved scRepli-seq, which distinguishes pairs of homologous chromosomes within a single cell, is feasible by using single-nucleotide polymorphism (SNP)/indel information. We also provide computational pipelines for quality control, normalization, and binarization of the scRepli-seq data. The experimental portion of this protocol (before sequencing) takes 3 d.


Assuntos
Replicação do DNA , Genômica/métodos , Análise de Sequência de DNA/métodos , Análise de Célula Única/métodos , Animais , Linhagem Celular , Humanos , Fase S/genética
17.
Mol Cell Biol ; 26(11): 4111-21, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16705164

RESUMO

The orphan nuclear receptor Ad4BP/SF-1 (adrenal 4 binding protein/steroidogenic factor 1) is essential for the proper development and function of reproductive and steroidogenic tissues. Although the expression of Ad4BP/SF-1 is specific for those tissues, the mechanisms underlying this tissue-specific expression remain unknown. In this study, we used transgenic mouse assays to examine the regulation of the tissue-specific expression of Ad4BP/SF-1. An investigation of the entire Ad4BP/SF-1 gene locus revealed a fetal adrenal enhancer (FAdE) in intron 4 containing highly conserved binding sites for Pbx-Prep, Pbx-Hox, and Ad4BP/SF-1. Transgenic assays revealed that the Ad4 sites, together with Ad4BP/SF-1, develop an autoregulatory loop and thereby maintain transcription, while the Pbx/Prep and Pbx/Hox sites initiate transcription prior to the establishment of the autoregulatory loop. Indeed, a limited number of Hox family members were found to be expressed in the adrenal primordia. Whether a true fetal-type adrenal cortex is present in mice remained controversial, and this argument was complicated by the postnatal development of the so-called X zone. Using transgenic mice with lacZ driven by the FAdE, we clearly identified a fetal adrenal cortex in mice, and the X zone is the fetal adrenal cells accumulated at the juxtamedullary region after birth.


Assuntos
Glândulas Suprarrenais/embriologia , Desenvolvimento Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Glândulas Suprarrenais/citologia , Animais , Sequência de Bases , Sítios de Ligação/genética , Elementos Facilitadores Genéticos/genética , Feto/citologia , Íntrons/genética , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Especificidade de Órgãos , Fator de Transcrição 1 de Leucemia de Células Pré-B , Ligação Proteica , Transporte Proteico , Fator Esteroidogênico 1 , beta-Galactosidase/metabolismo
18.
Biosci Biotechnol Biochem ; 73(1): 79-84, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19129652

RESUMO

Nicotinic acid and nicotinamide belong to the water-soluble vitamins, and they have many physiological and pharmacological functions in various organisms. In this study, we investigated the differentiation-inducing ability of nicotinic acid-related compounds in chronic myelogenous leukemia K562 cell line. Proliferation of K562 leukemia cells was inhibited by several nicotinic acid-related compounds. Hemoglobin content was increased by nicotinic acid and by isonicotinic acid. Isonicotinic acid increased gamma-globin mRNA expression as much as sodium butyrate did. The nuclei of nicotinic acid and of isonicotinic acid-treated cells decreased in size and the chromatin became more condensed. It was verified that nicotinic acid and isonicotinic acid induced erythroid differentiation in K562 cells. Expression of glycophorin A was increased by sodium butyrate. In contrast, it was decreased by nicotinic acid and by isonicotinic acid, suggesting that these compounds differentiate K562 to erythrocytes through different pathways than sodium butyrate does. Our data perhaps provide useful information as to the mechanisms of cell differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Ácidos Nicotínicos/farmacologia , Butiratos/farmacologia , Proliferação de Células/efeitos dos fármacos , Glicoforinas/análise , Hemoglobinas/análise , Hemoglobinas/genética , Humanos , Células K562 , RNA Mensageiro/análise
19.
PLoS One ; 14(9): e0222188, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31513634

RESUMO

BACKGROUND: Environmental and endogenous factors under genetic predisposition are considered to initiate the human intervertebral disc (IVD) degeneration. DNA methylation is an essential mechanism to ensure cell-specific gene expression for normal development and tissue stability. Aberrant epigenetic alterations play a pivotal role in several diseases, including osteoarthritis. However, epigenetic alternations, including DNA methylation, in IVD degeneration have not been evaluated. The purpose of this study was to comprehensively compare the genome-wide DNA methylation profiles of human IVD tissues, specifically nucleus pulpous (NP) tissues, with early and advanced stages of disc degeneration. METHODS: Human NP tissues were used in this study. The samples were divided into two groups: early stage degeneration (n = 8, Pfirrmann's MRI grade: I-III) and advanced stage degeneration (n = 8, grade: IV). Genomic DNA was processed for genome-wide DNA methylation profiling using the Infinium MethylationEPIC BeadChip array. Extraction of raw methylation data, clustering and scatter plot of each group values of each sample were performed using a methylation module in GenomeStudio software. The identification of differentially methylated loci (DMLs) and the Gene Ontology (GO) analysis were performed using R software with the ChAMP package. RESULTS: Unsupervised hierarchical clustering revealed that early and advanced stage degenerated IVD samples segregated into two main clusters by their DNA methylome. A total of 220 DMLs were identified between early and advanced disc degeneration stages. Among these, four loci were hypomethylated and 216 loci were hypermethylated in the advanced disc degeneration stage. The GO enrichment analysis of genes containing DMLs identified two significant GO terms for biological processes, hemophilic cell adhesion and cell-cell adhesion. CONCLUSIONS: We conducted a genome-wide DNA methylation profile comparative study and observed significant differences in DNA methylation profiles between early and advanced stages of human IVD degeneration. These results implicate DNA methylation in the process of human IVD degeneration.


Assuntos
Epigênese Genética/genética , Degeneração do Disco Intervertebral/genética , Núcleo Pulposo/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Ilhas de CpG/genética , Metilação de DNA/genética , Epigenômica/métodos , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Genoma/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Disco Intervertebral/metabolismo , Masculino , Pessoa de Meia-Idade , Núcleo Pulposo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA