Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Comput Chem ; 45(12): 898-902, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38158621

RESUMO

Energy decomposition analysis is one of the most attractive features of fragment molecular orbital (FMO) calculations from the point of view of practical applications. Here we report some enhancements for PIEDA in the ABINIT-MP program. One is a separation of the dispersion-type stabilization from the electron correlation energy, traditionally referred to as the "dispersion interaction" (DI). Another is an alternative evaluation of the electrostatic (ES) interaction using the restrained electrostatic potential (RESP) charges. The GA:CT stacked base pair and the Trp-Cage miniprotein were used as illustrative examples.

2.
Phys Chem Chem Phys ; 24(14): 8439-8452, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35343527

RESUMO

Variational quantum eigensolver (VQE)-based quantum chemical calculations have been extensively studied as a computational model using noisy intermediate-scale quantum devices. The VQE uses a parametrized quantum circuit defined through an "ansatz" to generate approximated wave functions, and the appropriate choice of an ansatz is the most important step. Because most chemistry problems focus on the energy difference between two electronic states or structures, calculating the total energies in different molecular structures with the same accuracy is essential to correctly understand chemistry and chemical processes. In this context, the development of ansatzes that are capable of describing electronic structures of strongly correlated systems accurately is an important task. Here we applied a conventional unitary coupled cluster (UCC) and a newly developed multireference unitary coupled cluster with partially generalized singles and doubles (MR-UCCpGSD) ansatzes to the quasi-reaction pathway of Be insertion into H2, LiH molecule under covalent bond dissociation, and a rectangular tetra-hydrogen cluster known as a P4 cluster; these are representative systems in which the static electron correlation effect is prominent. Our numerical simulations revealed that the UCCSD ansatz exhibits extremely slow convergence behaviour around the point where an avoided crossing occurs in the Be + H2 → BeH2 reaction pathway, resulting in a large discrepancy of the simulated VQE energy from the full-configuration interaction (full-CI) value. By contrast, the MR-UCCpGSD ansatz can give more reliable results with respect to total energy and the overlap with the full-CI solution, insisting the importance of multiconfigurational treatments in the calculations of strongly correlated systems. The MR-UCCpGSD ansatz allows us to compute the energy with the same accuracy regardless of the strength of multiconfigurational character, which is an essential property to discuss energy differences of various molecular systems.

3.
J Chem Inf Model ; 60(7): 3593-3602, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32539372

RESUMO

The worldwide spread of COVID-19 (new coronavirus found in 2019) is an emergent issue to be tackled. In fact, a great amount of works in various fields have been made in a rather short period. Here, we report a fragment molecular orbital (FMO) based interaction analysis on a complex between the SARS-CoV-2 main protease (Mpro) and its peptide-like inhibitor N3 (PDB ID: 6LU7). The target inhibitor molecule was segmented into five fragments in order to capture site specific interactions with amino acid residues of the protease. The interaction energies were decomposed into several contributions, and then the characteristics of hydrogen bonding and dispersion stabilization were made clear. Furthermore, the hydration effect was incorporated by the Poisson-Boltzmann (PB) scheme. From the present FMO study, His41, His163, His164, and Glu166 were found to be the most important amino acid residues of Mpro in interacting with the inhibitor, mainly due to hydrogen bonding. A guideline for optimizations of the inhibitor molecule was suggested as well based on the FMO analysis.


Assuntos
Betacoronavirus/enzimologia , Cisteína Endopeptidases/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Proteases/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Ligação Proteica , Conformação Proteica , SARS-CoV-2 , Proteínas não Estruturais Virais/química
4.
Phys Chem Chem Phys ; 21(38): 21213-21222, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31418759

RESUMO

Trivalent actinides and their lanthanide homologues are being scrutinized for their potential health risk when ingested as a result of a range of industrial activities such as mining. Importantly, these ions are known to exhibit high affinity towards calmodulin (CaM). In case of their inadvertent uptake, the holoproteins that are occupied by these cations may block signal transduction pathways or increase the concentration of these ions in intact cells, which could lead to accumulation in human organs. Accordingly, this investigation employed spectroscopy, computational chemistry, calorimetry, and biochemistry to study the results of metal ion substitution on the protein structure, enzymatic activity and chemo- and cytotoxicity of An3+/Ln3+ ions. As will be demonstrated herein, our data confirm the higher affinity of Cm3+ and Eu3+ compared to Ca2+ to all 4 binding sites of CaM, with one site differing from the remaining three. This higher-affinity site will complex Eu3+ in an exothermic fashion; in contrast, ion binding to the three lower-affinity EF-hands was found to be endothermic. The overall endothermic binding process is ascribed to the loss of the hydration shells of the trivalent ions upon protein binding. These findings are supported by extensive quantum chemical calculations of full holo-CaM, which were performed at the MP2 level using the fragment molecular orbital method. The exceptional binding site (EF-hand 3) features fewer negatively charged residues compared to the other EF-hands, thereby allowing Eu3+ and Cm3+ to carry one or two additional waters compared to Ca2+-CaM, while also causing the structure of Cm3+/Eu3+-CaM to become slightly disordered. Moreover, the enzymatic activity decreases somewhat in comparison to Ca2+-CaM. By utilizing a combination of techniques, we were able to generate a comprehensive picture of the CaM-actinide/lanthanide system from the molecular level to its functional impact. Such knowledge could also be applied to other metal-binding proteins.


Assuntos
Calmodulina/química , Calmodulina/metabolismo , Cúrio/química , Európio/química , Sítios de Ligação , Cálcio/química , Cátions , Simulação de Dinâmica Molecular , Conformação Proteica , Água
5.
Chem Commun (Camb) ; 60(36): 4769-4772, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38563824

RESUMO

Bovine serum albumin (BSA) has a uranyl(VI) binding hotspot where uranium is tightly bound by three carboxylates. Uranyl oxygen is "soaked" into the hydrophobic core of BSA. Isopropyl hydrogen of Val is trapped near UO22+ and upon photoexcitation, C-H bond cleavage is initiated. A unique hydrophobic contact with "yl"-oxygen, as observed here, can be used to induce C-H activation.

6.
J Phys Chem B ; 128(10): 2249-2265, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38437183

RESUMO

A novel in silico drug design procedure is described targeting the Main protease (Mpro) of the SARS-CoV-2 virus. The procedure combines molecular docking, molecular dynamics (MD), and fragment molecular orbital (FMO) calculations. The binding structure and properties of Mpro were predicted for Nelfinavir (NFV), which had been identified as a candidate compound through drug repositioning, targeting Mpro. Several poses of the Mpro and NFV complexes were generated by docking, from which four docking poses were selected by scoring with FMO energy. Then, each pose was subjected to MD simulation, 100 snapshot structures were sampled from each of the generated MD trajectories, and the structures were evaluated by FMO calculations to rank the pose based on binding energy. Several residues were found to be important in ligand recognition, including Glu47, Asp48, Glu166, Asp187, and Gln189, all of which interacted strongly with NFV. Asn142 is presumably regarded to form hydrogen bonds or CH/π interaction with NFV; however, in the present calculation, their interactions were transient. Moreover, the tert-butyl group of NFV had no interaction with Mpro. Identifying such strong and weak interactions provides candidates for maintaining and substituting ligand functional groups and important suggestions for drug discovery using drug repositioning. Besides the interaction between NFV and the amino acid residues of Mpro, the desolvation effect of the binding pocket also affected the ranking order. A similar procedure of drug design was applied to Lopinavir, and the calculated interaction energy and experimental inhibitory activity value trends were consistent. Our approach provides a new guideline for structure-based drug design starting from a candidate compound whose complex crystal structure has not been obtained.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Humanos , Ligantes , Simulação de Acoplamento Molecular , Nelfinavir/farmacologia , SARS-CoV-2 , Simulação de Dinâmica Molecular
7.
FEBS J ; 290(18): 4419-4428, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36856076

RESUMO

Over 4 billion years of evolution, multiple mutations, including nucleotide substitutions, gene and genome duplications and recombination, have established de novo genes that translate into proteins with novel properties essential for high-order cellular functions. However, molecular processes through which a protein evolutionarily acquires a novel function are mostly speculative. Recently, we have provided evidence for a potential evolutionary mechanism underlying how, in mammalian cells, phosphatidylinositol 5-phosphate 4-kinase ß (PI5P4Kß) evolved into a GTP sensor from ATP-utilizing kinase. Mechanistically, PI5P4Kß has acquired the guanine efficient association (GEA) motif by mutating its nucleotide base recognition sequence, enabling the evolutionary transition from an ATP-dependent kinase to a distinct GTP/ATP dual kinase with its KM for GTP falling into physiological GTP concentrations-the genesis of GTP sensing activity. Importantly, the GTP sensing activity of PI5P4Kß is critical for the manifestation of cellular metabolism and tumourigenic activity in the multicellular organism. The combination of structural, biochemical and biophysical analyses used in our study provides a novel framework for analysing how a protein can evolutionarily acquire a novel activity, which potentially introduces a critical function to the cell.


Assuntos
Trifosfato de Adenosina , Evolução Molecular , Animais , Guanosina Trifosfato/metabolismo , Trifosfato de Adenosina/metabolismo , Mamíferos/metabolismo
9.
Structure ; 30(6): 886-899.e4, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35504278

RESUMO

Unlike most kinases, phosphatidylinositol 5-phosphate 4-kinase ß (PI5P4Kß) utilizes GTP as a physiological phosphate donor and regulates cell growth under stress (i.e., GTP-dependent stress resilience). However, the genesis and evolution of its GTP responsiveness remain unknown. Here, we reveal that PI5P4Kß has acquired GTP preference by generating a short dual-nucleotide-recognizing motif called the guanine efficient association (GEA) motif. Comparison of nucleobase recognition with 660 kinases and 128 G proteins has uncovered that most kinases and PI5P4Kß use their main-chain atoms for adenine recognition, while the side-chain atoms are required for guanine recognition. Mutational analysis of the GEA motif revealed that the acquisition of GTP reactivity is accompanied by an extended activity toward inosine triphosphate (ITP) and xanthosine triphosphate (XTP). Along with the evolutionary analysis data that point to strong negative selection of the GEA motif, these results suggest that the GTP responsiveness of PI5P4Kß has evolved from a compromised trade-off between activity and specificity, underpinning the development of the GTP-dependent stress resilience.


Assuntos
Proteínas de Ligação ao GTP , Inosina Trifosfato , Proteínas de Ligação ao GTP/metabolismo , Guanina , Guanosina Trifosfato/metabolismo , Inosina Trifosfato/metabolismo
10.
J Phys Chem Lett ; 12(46): 11267-11272, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34766775

RESUMO

Visualization of the interfacial electrostatic complementarity (VIINEC) is a recently developed method for analyzing protein-protein interactions using electrostatic potential (ESP) calculated via the ab initio fragment molecular orbital method. In this Letter, the molecular interactions of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein with human angiotensin-converting enzyme 2 (ACE2) and B38 neutralizing antibody were examined as an illustrative application of VIINEC. The results of VIINEC revealed that the E484 of RBD has a role in making a local electrostatic complementary with ACE2 at the protein-protein interface, while it causes a considerable repulsive electrostatic interaction. Furthermore, the calculated ESP map at the interface of the RBD/B38 complex was significantly different from that of the RBD/ACE2 complex, which is discussed herein in association with the mechanism of the specificity of the antibody binding to the target protein.


Assuntos
Glicoproteína da Espícula de Coronavírus , Eletricidade Estática
11.
RSC Adv ; 11(6): 3272-3279, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35424290

RESUMO

At the stage of SARS-CoV-2 infection in human cells, the spike protein consisting of three chains, A, B, and C, with a total of 3300 residues plays a key role, and thus its structural properties and the binding nature of receptor proteins to host human cells or neutralizing antibodies has attracted considerable interest. Here, we report on interaction analyses of the spike protein in both closed (PDB-ID: 6VXX) and open (6VYB) structures, based on large-scale fragment molecular orbital (FMO) calculations at the level of up to the fourth-order Møller-Plesset perturbation with singles, doubles, and quadruples (MP4(SDQ)). Inter-chain interaction energies were evaluated for both structures, and a mutual comparison indicated considerable losses of stabilization energies in the open structure, especially in the receptor binding domain (RBD) of chain-B. The role of charged residues in inter-chain interactions was illuminated as well. By two separate calculations for the RBD complexes with angiotensin-converting enzyme 2 (ACE2) (6M0J) and B38 Fab antibody (7BZ5), it was found that the binding with ACE2 or antibody partially compensated for this stabilization loss of RBD.

12.
J Phys Chem B ; 125(24): 6501-6512, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34124906

RESUMO

By the splendid advance in computation power realized with the Fugaku supercomputer, it has become possible to perform ab initio fragment molecular orbital (FMO) calculations for thousands of dynamic structures of protein-ligand complexes in a parallel way. We thus carried out electron-correlated FMO calculations for a complex of the 3C-like (3CL) main protease (Mpro) of the new coronavirus (SARS-CoV-2) and its inhibitor N3 incorporating the structural fluctuations sampled by classical molecular dynamics (MD) simulation in hydrated conditions. Along with a statistical evaluation of the interfragment interaction energies (IFIEs) between the N3 ligand and the surrounding amino-acid residues for 1000 dynamic structure samples, in this study we applied a novel approach based on principal component analysis (PCA) and singular value decomposition (SVD) to the analysis of IFIE data in order to extract the dynamically cooperative interactions between the ligand and the residues. We found that the relative importance of each residue is modified via the structural fluctuations and that the ligand is bound in the pharmacophore in a dynamic manner through collective interactions formed by multiple residues, thus providing new insight into structure-based drug discovery.


Assuntos
SARS-CoV-2 , Proteínas da Matriz Viral/química , Aminoácidos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
13.
ACS Chem Neurosci ; 11(3): 385-394, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31899612

RESUMO

Neurotoxicity caused by nonfibrillar amyloid ß (Aß) oligomers in the brain is suggested to be associated with the onset of Alzheimer's disease (AD). Elucidating the structural features of Aß oligomers is critical for promoting drug discovery research for AD. One of the Aß oligomers, known as Aß*56, is a dodecamer that impairs memory when injected into healthy rats, suggesting that Aß*56 may contribute to cognitive deficits in AD patients. Another dodecamer structure, formed by 20-residue peptide segments derived from the Aß peptide (Aß17-36), has been revealed by X-ray crystallography. The structure of the Aß17-36 dodecamer is composed of trimer units and shows the oligomer antibody A11 reactivity, which are characteristic of Aß*56, indicating that Aß*56 and the Aß17-36 dodecamer share a similar structure. However, the structure of the C-terminal regions (Aß37-42) remains unclear. The C-terminal region, which is abundant in hydrophobic residues, is thought to play a key role in stabilizing the oligomer structure by forming a hydrophobic core. In this study, we employed dissipative particle dynamics, a coarse-grained simulation method with soft core potentials, utilizing the crystal structure information to unravel Aß dodecamer structures with C-terminal regions. The simulation results were validated by the reported experimental data. Hence, an analysis of the simulation results can provide structural insights into Aß oligomers. Our simulations revealed the stabilization mechanism of the dodecamer structure at the molecular level. We showed that C-terminal regions spontaneously form a hydrophobic core in the central cavity, contributing to stabilizing the dodecamer structure. Furthermore, four consecutive hydrophobic residues in the C-terminal region (i.e., Val39-Ala42) are important for core formation.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Multimerização Proteica/fisiologia , Cristalografia por Raios X/métodos , Descoberta de Drogas/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular
14.
Chem Commun (Camb) ; 55(14): 2015-2018, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30643910

RESUMO

UO22+ was shown to form an interstrand crosslink between two different strands of a single DNA molecule. This crosslink hardly affected the hydrogen bonds between nucleobase pairs but destabilized the π-π stacking between the two nucleobases in the vicinity of UO22+-bound phosphate. Thereby, the fragility of the DNA backbone increased upon UO22+ binding.


Assuntos
DNA/química , Compostos de Urânio/química , Absorciometria de Fóton , Sítios de Ligação , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Fosfatos/química , Teoria Quântica
15.
J Phys Chem B ; 122(1): 338-347, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29285920

RESUMO

In the analyses of miscibility behaviors of macromolecules and polymers, dissipative particle dynamics (DPD) simulations are generally performed. In these simulations, the so-called χ parameters describing the effective interactions among particles are crucial. It has been known that such parameters can be obtained within the classical or empirical force field frameworks. However, there is a potential problem that charge transfer and polarization occasionally occur. Additionally, satisfactory reference parameters are not available for some cases. Therefore, we developed a new procedure to evaluate the set of parameters by using the ab initio fragment molecular orbital (FMO) method which can provide the set of interaction energies among segments as polymer units. Moreover, we evaluated the anisotropy of molecules by using the FMO-based effective interaction parameters for three standard binary mixture systems (hexane-nitrobenzene, polyisobutylene-diisobutyl ketone, and polyisoprene-polystyrene). The calculated values showed good agreement with the experimental values with about 10% errors.

16.
RSC Adv ; 8(60): 34582-34595, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35548624

RESUMO

The mesoscopic structures of polymer electrolyte membrane (PEM) affect the performances of fuel cells. Nafion® with the Teflon® backbone has been the most widely used of all PEMs, but sulfonated poly-ether ether-ketone (SPEEK) having an aromatic backbone has drawn interest as an alternative to Nafion. In the present study, a series of dissipative particle dynamics (DPD) simulations were performed to compare Nafion and SPEEK. These PEM polymers were modeled by connected particles corresponding to the hydrophobic backbone and the hydrophilic moiety of sulfonic acid group. The water particle interacting with Nafion particles was prepared as well. The crucial interaction parameters among DPD particles were evaluated by a series of calculations based on the fragment molecular orbital (FMO) method in a non-empirical way (Okuwaki et al., J. Phys. Chem. B, 2018, 122, 338-347). Through the DPD simulations, the water and hydrophilic particles aggregated, forming cluster networks surrounded by the hydrophobic phase. The structural features of formed water clusters were investigated in detail. Furthermore, the differences in percolation behaviors between Nafion and SPEEK revealed much better connectivity among water clusters by Nafion. The present FMO-DPD simulation results were in good agreement with available experimental data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA